Theory of activated rate processes: A new derivation of Kramers’ expression E Pollak The Journal of chemical physics 85 (2), 865-867, 1986 | 396 | 1986 |

Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem E Pollak, H Grabert, P Hänggi The Journal of chemical physics 91 (7), 4073-4087, 1989 | 338 | 1989 |

Reaction rate theory: What it was, where is it today, and where is it going? E Pollak, P Talkner Chaos: An Interdisciplinary Journal of Nonlinear Science 15 (2), 026116, 2005 | 307 | 2005 |

Transition states, trapped trajectories, and classical bound states embedded in the continuum E Pollak, P Pechukas The Journal of Chemical Physics 69 (3), 1218-1226, 1978 | 244 | 1978 |

Quantum Mechanics of a Classically Chaotic System: Observations on Scars, Periodic Orbits and Vibrational Adiabaticity PE Eckhardt Bruno, Hose Gabriel Physical Review A 39, 3776, 1989 | 168 | 1989 |

B. Eckhardt, G. Hose, and E. Pollak, Phys. Rev. A 39, 3776 (1989). B Eckhardt Phys. Rev. A 39, 3776, 0 | 168* | |

New physical interpretation for time in scattering theory E Pollak, WH Miller Physical review letters 53 (2), 115, 1984 | 159 | 1984 |

A new quantum transition state theory E Pollak, JL Liao The Journal of chemical physics 108 (7), 2733-2743, 1998 | 156 | 1998 |

Classical transition state theory: a lower bound to the reaction probability E Pollak, MS Child, P Pechukas The Journal of Chemical Physics 72 (3), 1669-1678, 1980 | 147 | 1980 |

Classical transition state theory is exact if the transition state is unique P Pechukas, E Pollak The Journal of Chemical Physics 71 (5), 2062-2068, 1979 | 136 | 1979 |

Symmetry numbers, not statistical factors, should be used in absolute rate theory and in Broensted relations ELI Pollak, P Pechukas Journal of the American Chemical Society 100 (10), 2984-2991, 1978 | 135 | 1978 |

Quantum Kramers model: Solution of the turnover problem I Rips, E Pollak Physical Review A 41 (10), 5366, 1990 | 120 | 1990 |

Hamiltonian theory for vibrational dephasing rates of small molecules in liquids AM Levine, M Shapiro, E Pollak The Journal of chemical physics 88 (3), 1959-1966, 1988 | 114 | 1988 |

Activated rate processes: generalization of the Kramers–Grote–Hynes and Langer theories AM Berezhkovskii, E Pollak, VY Zitserman The Journal of chemical physics 97 (4), 2422-2437, 1992 | 111 | 1992 |

A simple classical prediction of quantal resonances in collinear reactive scattering E Pollak, MS Child Chemical Physics 60 (1), 23-32, 1981 | 109 | 1981 |

Spectral analysis of conservative dynamical systems MA Sepúlveda, R Badii, E Pollak Physical review letters 63 (12), 1226, 1989 | 106 | 1989 |

A new possibility of chemical bonding: vibrational stabilization of IHI J Manz, R Meyer, E Pollak, J Römelt Chemical Physics Letters 93 (2), 184-187, 1982 | 101 | 1982 |

Unified statistical model for ’’complex’’ and ’’direct’’ reaction mechanisms: A test on the collinear H+H_{2} exchange reactionE Pollak, P Pechukas The Journal of Chemical Physics 70 (1), 325-333, 1979 | 98 | 1979 |

Transition state theory for quantum decay rates in dissipative systems: the high-temperature limit E Pollak Chemical physics letters 127 (2), 178-182, 1986 | 97 | 1986 |

Variational transition-state theory for reaction rates in dissipative systems E Pollak, SC Tucker, BJ Berne Physical review letters 65 (12), 1399, 1990 | 95 | 1990 |