Error metrics for learning reliable manifolds from streaming data F Schoeneman, S Mahapatra, V Chandola, N Napp, J Zola Proceedings of the 2017 SIAM International Conference on Data Mining, 750-758, 2017 | 15 | 2017 |
S-Isomap++: Multi manifold learning from streaming data S Mahapatra, V Chandola 2017 IEEE International Conference on Big Data (Big Data), 716-725, 2017 | 10 | 2017 |
Interpretable graph similarity computation via differentiable optimal alignment of node embeddings KD Doan, S Manchanda, S Mahapatra, CK Reddy Proceedings of the 44th International ACM SIGIR Conference on Research and …, 2021 | 7 | 2021 |
Learning manifolds from non-stationary streaming data S Mahapatra, V Chandola arXiv preprint arXiv:1804.08833, 2018 | 4 | 2018 |
Discretized Bottleneck: Posterior-Collapse-Free Sequence-to-Sequence Learning Y Zhao, P Yu, S Mahapatra, Q Su, C Chen | 3 | 2020 |
A cold start recommendation system using item correlation and user similarity S Mahapatra, A Tareen, Y Yang ACM Transactions on Information Systems, 2015 | 3 | 2015 |
Modeling graphs using a mixture of Kronecker models S Mahapatra, V Chandola 2015 IEEE international conference on big data (big data), 727-736, 2015 | 2 | 2015 |
Improve Variational Autoencoder for Text Generationwith Discrete Latent Bottleneck Y Zhao, P Yu, S Mahapatra, Q Su, C Chen arXiv preprint arXiv:2004.10603, 2020 | 1 | 2020 |
New Methods & Metrics for LFQA tasks S Mahapatra, V Blagojevic, P Bertorello, P Kumar arXiv preprint arXiv:2112.13432, 2021 | | 2021 |
Learning Manifolds from Non-stationary Streams S Mahapatra, V Chandola | | 2021 |
Scalable Nonlinear Spectral Dimensionality Reduction Methods for Streaming Data S Mahapatra State University of New York at Buffalo, 2018 | | 2018 |
Interpretable Graph Similarity Computation via Differentiable Optimal Alignment of Node Embeddings S Manchanda, K Doan, S Mahapatra, CK Reddy | | |