Volgen
Lukas Ruff
Lukas Ruff
Aignostics
Geverifieerd e-mailadres voor aignostics.com - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Deep One-Class Classification
L Ruff, R Vandermeulen, N Görnitz, L Deecke, SA Siddiqui, A Binder, ...
International Conference on Machine Learning 80, 4393-4402, 2018
14622018
A Unifying Review of Deep and Shallow Anomaly Detection
L Ruff, JR Kauffmann, RA Vandermeulen, G Montavon, W Samek, M Kloft, ...
Proceedings of the IEEE, 2021
4732021
Deep Semi-Supervised Anomaly Detection
L Ruff, RA Vandermeulen, N Görnitz, A Binder, E Müller, KR Müller, ...
International Conference on Learning Representations, 2020
3952020
Image Anomaly Detection with Generative Adversarial Networks
L Deecke, R Vandermeulen, L Ruff, S Mandt, M Kloft
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2018
2222018
Explainable Deep One-Class Classification
P Liznerski, L Ruff, RA Vandermeulen, BJ Franks, M Kloft, KR Müller
International Conference on Learning Representations, 2021
1332021
Rethinking Assumptions in Deep Anomaly Detection
L Ruff, RA Vandermeulen, BJ Franks, KR Müller, M Kloft
ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning, 2021
642021
From Clustering to Cluster Explanations via Neural Networks
J Kauffmann, M Esders, L Ruff, G Montavon, W Samek, KR Müller
IEEE Transactions on Neural Networks and Learning Systems, 1-15, 2022
572022
Self-Attentive, Multi-Context One-Class Classification for Unsupervised Anomaly Detection on Text
L Ruff, Y Zemlyanskiy, R Vandermeulen, T Schnake, M Kloft
Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019
462019
Simple and Effective Prevention of Mode Collapse in Deep One-Class Classification
P Chong, L Ruff, M Kloft, A Binder
International Joint Conference on Neural Networks (IJCNN), 1-9, 2020
302020
The Clever Hans Effect in Anomaly Detection
J Kauffmann, L Ruff, G Montavon, KR Müller
arXiv preprint arXiv:2006.10609, 2020
252020
Deep Support Vector Data Description for Unsupervised and Semi-Supervised Anomaly Detection
L Ruff, RA Vandermeulen, N Görnitz, A Binder, E Müller, M Kloft
ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning, 2019
192019
Transfer-Based Semantic Anomaly Detection
L Deecke, L Ruff, RA Vandermeulen, H Bilen
International Conference on Machine Learning, 2546-2558, 2021
182021
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
P Liznerski, L Ruff, RA Vandermeulen, BJ Franks, KR Müller, M Kloft
Transactions on Machine Learning Research, 2022
62022
Deep Anomaly Detection by Residual Adaptation
L Deecke, L Ruff, RA Vandermeulen, H Bilen
arXiv preprint arXiv:2010.02310, 2020
52020
Geometric Disentanglement by Random Convex Polytopes
M Joswig, M Kaluba, L Ruff
arXiv preprint arXiv:2009.13987, 2020
32020
Deep One-Class Learning: A Deep Learning Approach to Anomaly Detection
L Ruff
Technische Universität Berlin, 2021
22021
AI powered quantification of mitotic rate in H&E stained tissue detects significant differences between treatment groups of preclinical pancreas cancer xenografts
S Ruane, L Ruff, B Reichholf, C Aigner, E Barbuta, S Tietz, O Atanaszov, ...
Cancer Research 83 (7_Supplement), 5423-5423, 2023
2023
Cell cycle arrest status predicted from H&E stained images using deep learning
C Aigner, B Reichholf, M Emschwiller, M Pezer, T Winterhoff, ...
Cancer Research 83 (7_Supplement), 5441-5441, 2023
2023
Leveraging weak complementary labels to improve semantic segmentation of hepatocellular carcinoma and cholangiocarcinoma in H&E-stained slides
M Hägele, J Eschrich, L Ruff, M Alber, S Schallenberg, A Guillot, ...
arXiv preprint arXiv:2302.01813, 2023
2023
High-resolution molecular atlas of a lung tumor in 3D
TM Pentimalli, S Schallenberg, D Leon-Perinan, I Legnini, I Theurillat, ...
bioRxiv, 2023.05. 10.539644, 2023
2023
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20