Thomas Mach
Thomas Mach
Postdoc at the Department of Mathematical Sciences, Kent State University
Verified email at nu.edu.kz - Homepage
TitleCited byYear
Fast and backward stable computation of roots of polynomials
JL Aurentz, T Mach, R Vandebril, DS Watkins
302014
Computing All or Some Eigenvalues of Symmetric H_ℓ-Matrices
P Benner, T Mach
SIAM Journal on Scientific Computing 34 (1), A485-A496, 2012
162012
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
T Mach
142011
Inverse eigenvalue problems for extended Hessenberg and extended tridiagonal matrices
T Mach, M Van Barel, R Vandebril
Journal of Computational and Applied Mathematics 272, 377-398, 2014
12*2014
Computing Approximate Extended Krylov Subspaces without Explicit Inversion
T Mach, MS Pranic, R Vandebril
122013
On deflations in extended QR algorithms
T Mach, R Vandebril
SIAM Journal on Matrix Analysis and Applications 35 (2), 559-579, 2014
112014
On the QR decomposition of ℋ-matrices
P Benner, T Mach
Computing 88 (3), 111-129, 2010
11*2010
Computing approximate (block) rational Krylov subspaces without explicit inversion with extensions to symmetric matrices
T Mach, MS Pranic, R Vandebril
Electron. Trans. Numer. Anal 43, 100-124, 2014
102014
The preconditioned inverse iteration for hierarchical matrices
P Benner, T Mach
92011
Fast and stable unitary QR algorithm
JL Aurentz, T Mach, R Vandebril, DS Watkins
Electron. Trans. Numer. Anal 44, 327-341, 2015
82015
Eigenvalue Algorithms for Symmetric Hierarchical Matrices
T Mach
TU Chemnitz/Max Planck Institute for Dynamics of C, 2012
82012
Fast and backward stable computation of eigenvalues and eigenvectors of matrix polynomials
J Aurentz, T Mach, L Robol, R Vandebril, D Watkins
Mathematics of Computation 88 (315), 313-347, 2019
72019
The LR Cholesky algorithm for symmetric hierarchical matrices
P Benner, T Mach
Linear Algebra and its Applications 439 (4), 1150-1166, 2013
52013
A note on companion pencils
JL Aurentz, T Mach, R Vandebril, DS Watkins
42014
Computing the eigenvalues of symmetric $${\fancyscript {H}}^ 2$$-matrices by slicing the spectrum
P Benner, S Börm, T Mach, K Reimer
Computing and Visualization in Science 16 (6), 271-282, 2013
42013
Locally optimal block preconditioned conjugate gradient method for hierarchical matrices
P Benner, T Mach
PAMM 11 (1), 741-742, 2011
42011
Core-chasing algorithms for the eigenvalue problem
JL Aurentz, T Mach, L Robol, R Vandebril, DS Watkins
SIAM, 2018
32018
Towards an ADI iteration for Tensor Structured Equations
T Mach, J Saak
Max Planck Institute Preprints, 2011
32011
An extended Hamiltonian QR algorithm
M Ferranti, B Iannazzo, T Mach, R Vandebril
Calcolo 54 (3), 1097-1120, 2017
22017
An extended Hessenberg form for Hamiltonian matrices
M Ferranti, B Iannazzo, T Mach, R Vandebril
Calcolo 54 (1), 423-453, 2017
22017
The system can't perform the operation now. Try again later.
Articles 1–20