Paulino Pérez
Paulino Pérez
Verified email at
Cited by
Cited by
Genome-wide regression and prediction with the BGLR statistical package
P Pérez, G de Los Campos
Genetics 198 (2), 483-495, 2014
Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
J Crossa, G Campos, P Pérez, D Gianola, J Burgueño, JL Araus, ...
Genetics 186 (2), 713-724, 2010
PlnTFDB: updated content and new features of the plant transcription factor database
P Pérez-Rodríguez, DM Riano-Pachon, LGG Corrêa, SA Rensing, ...
Nucleic acids research 38 (suppl_1), D822-D827, 2010
Genomic selection in plant breeding: methods, models, and perspectives
J Crossa, P Pérez-Rodríguez, J Cuevas, O Montesinos-López, D Jarquín, ...
Trends in plant science 22 (11), 961-975, 2017
Genomic prediction in CIMMYT maize and wheat breeding programs
J Crossa, P Perez, J Hickey, J Burgueno, L Ornella, J Cerón-Rojas, ...
Heredity 112 (1), 48-60, 2014
A reaction norm model for genomic selection using high-dimensional genomic and environmental data
D Jarquín, J Crossa, X Lacaze, P Du Cheyron, J Daucourt, J Lorgeou, ...
Theoretical and applied genetics 127 (3), 595-607, 2014
Genomic prediction in maize breeding populations with genotyping-by-sequencing
J Crossa, Y Beyene, S Kassa, P Pérez, JM Hickey, C Chen, ...
G3: Genes, Genomes, Genetics 3 (11), 1903-1926, 2013
Genomic‐enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R
P Pérez, G de Los Campos, J Crossa, D Gianola
The plant genome 3 (2), 2010
A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects
S Arvidsson, P Pérez‐Rodríguez, B Mueller‐Roeber
New Phytologist 191 (3), 895-907, 2011
Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat
P Pérez-Rodríguez, D Gianola, JM González-Camacho, J Crossa, ...
G3: Genes| Genomes| Genetics 2 (12), 1595-1605, 2012
Genome-enabled prediction of genetic values using radial basis function neural networks
JM González-Camacho, G de Los Campos, P Pérez, D Gianola, ...
Theoretical and Applied Genetics 125 (4), 759-771, 2012
Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs
X Zhang, P Pérez-Rodríguez, K Semagn, Y Beyene, R Babu, ...
Heredity 114 (3), 291-299, 2015
Genomic selection and prediction in plant breeding
J Crossa, P Pérez, G de los Campos, G Mahuku, S Dreisigacker, ...
Journal of Crop Improvement 25 (3), 239-261, 2011
Extending the marker× environment interaction model for genomic‐enabled prediction and genome‐wide association analysis in durum wheat
J Crossa, G de los Campos, M Maccaferri, R Tuberosa, J Burgueño, ...
Crop Science 56 (5), 2193-2209, 2016
Genomic prediction of gene bank wheat landraces
J Crossa, D Jarquín, J Franco, P Pérez-Rodríguez, J Burgueño, ...
G3: Genes, Genomes, Genetics 6 (7), 1819-1834, 2016
Genome-enabled prediction using the BLR (Bayesian Linear Regression) R-package
G de Los Campos, P Pérez, AI Vazquez, J Crossa
Genome-Wide Association Studies and Genomic Prediction, 299-320, 2013
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
J Cuevas, J Crossa, OA Montesinos-López, J Burgueño, ...
G3: Genes, Genomes, Genetics 7 (1), 41-53, 2017
Genomic prediction of genetic values for resistance to wheat rusts
L Ornella, S Singh, P Perez, J Burgueño, R Singh, E Tapia, S Bhavani, ...
The Plant Genome 5 (3), 2012
Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics
P Juliana, J Poland, J Huerta-Espino, S Shrestha, J Crossa, ...
Nature genetics 51 (10), 1530-1539, 2019
Genomic prediction of genotype× environment interaction kernel regression models
J Cuevas, J Crossa, V Soberanis, S Pérez‐Elizalde, P Pérez‐Rodríguez, ...
The plant genome 9 (3), plantgenome2016.03.0024, 2016
The system can't perform the operation now. Try again later.
Articles 1–20