Matteo Pirotta
Matteo Pirotta
Research Scientist, FAIR
Geverifieerd e-mailadres voor inria.fr - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Safe policy iteration
M Pirotta, M Restelli, A Pecorino, D Calandriello
International Conference on Machine Learning, 307-315, 2013
492013
Adaptive step-size for policy gradient methods
M Pirotta, M Restelli, L Bascetta
Advances in Neural Information Processing Systems, 1394-1402, 2013
452013
Multi-objective reinforcement learning with continuous pareto frontier approximation
M Pirotta, S Parisi, M Restelli
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015
312015
Stochastic variance-reduced policy gradient
M Papini, D Binaghi, G Canonaco, M Pirotta, M Restelli
arXiv preprint arXiv:1806.05618, 2018
282018
Policy gradient approaches for multi-objective sequential decision making
S Parisi, M Pirotta, N Smacchia, L Bascetta, M Restelli
2014 International Joint Conference on Neural Networks (IJCNN), 2323-2330, 2014
282014
Policy gradient in lipschitz markov decision processes
M Pirotta, M Restelli, L Bascetta
Machine Learning 100 (2-3), 255-283, 2015
252015
Efficient bias-span-constrained exploration-exploitation in reinforcement learning
R Fruit, M Pirotta, A Lazaric, R Ortner
arXiv preprint arXiv:1802.04020, 2018
212018
Near optimal exploration-exploitation in non-communicating markov decision processes
R Fruit, M Pirotta, A Lazaric
Advances in Neural Information Processing Systems, 2994-3004, 2018
162018
Adaptive batch size for safe policy gradients
M Papini, M Pirotta, M Restelli
Advances in Neural Information Processing Systems, 3591-3600, 2017
162017
Policy search for the optimal control of Markov Decision Processes: A novel particle-based iterative scheme
G Manganini, M Pirotta, M Restelli, L Piroddi, M Prandini
IEEE transactions on cybernetics 46 (11), 2643-2655, 2015
162015
Boosted fitted q-iteration
S Tosatto, M Pirotta, C d'Eramo, M Restelli
Proceedings of the 34th International Conference on Machine Learning-Volume†…, 2017
142017
Inverse reinforcement learning through policy gradient minimization
M Pirotta, M Restelli
Thirtieth AAAI Conference on Artificial Intelligence, 2016
132016
Manifold-based multi-objective policy search with sample reuse
S Parisi, M Pirotta, J Peters
Neurocomputing 263, 3-14, 2017
112017
Estimating the maximum expected value in continuous reinforcement learning problems
C D'Eramo, A Nuara, M Pirotta, M Restelli
Thirty-First AAAI Conference on Artificial Intelligence, 2017
102017
Compatible reward inverse reinforcement learning
AM Metelli, M Pirotta, M Restelli
Advances in Neural Information Processing Systems, 2050-2059, 2017
102017
Importance weighted transfer of samples in reinforcement learning
A Tirinzoni, A Sessa, M Pirotta, M Restelli
arXiv preprint arXiv:1805.10886, 2018
92018
Multi-objective reinforcement learning through continuous pareto manifold approximation
S Parisi, M Pirotta, M Restelli
Journal of Artificial Intelligence Research 57, 187-227, 2016
82016
Smoothing policies and safe policy gradients
M Papini, M Pirotta, M Restelli
arXiv preprint arXiv:1905.03231, 2019
62019
Regret minimization in mdps with options without prior knowledge
R Fruit, M Pirotta, A Lazaric, E Brunskill
Advances in Neural Information Processing Systems, 3166-3176, 2017
52017
Following newton direction in policy gradient with parameter exploration
G Manganini, M Pirotta, M Restelli, L Bascetta
2015 International Joint Conference on Neural Networks (IJCNN), 1-8, 2015
52015
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20