Volgen
Sebastian Urban Stich
Sebastian Urban Stich
CISPA Helmholtz Center for Information Security
Geverifieerd e-mailadres voor cispa.de - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Advances and open problems in federated learning
P Kairouz, HB McMahan, B Avent, A Bellet, M Bennis, AN Bhagoji, ...
Foundations and Trends® in Machine Learning 14 (1–2), 1-210, 2021
22562021
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
SP Karimireddy, S Kale, M Mohri, SJ Reddi, SU Stich, AT Suresh
ICML 2020 - International Conference on Machine Learning, 2019
724*2019
Local SGD Converges Fast and Communicates Little
SU Stich
ICLR 2019 - International Conference on Learning Representations, 2019
5812019
Sparsified SGD with memory
SU Stich, JB Cordonnier, M Jaggi
NeurIPS 2018 - Advances in Neural Information Processing Systems, 4448-4459, 2018
4562018
Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
A Koloskova, SU Stich, M Jaggi
ICML 2019 - International Conference on Machine Learning, 2019
3002019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
SP Karimireddy, Q Rebjock, SU Stich, M Jaggi
ICML 2019 - International Conference on Machine Learning, 2019
2962019
Don't Use Large Mini-Batches, Use Local SGD
T Lin, SU Stich, KK Patel, M Jaggi
ICLR 2020 - International Conference on Learning Representations, 2020
2912020
Ensemble Distillation for Robust Model Fusion in Federated Learning
T Lin, L Kong, SU Stich, M Jaggi
NeurIPS 2020 - Advances in Neural Information Processing Systems 33, 2020
2142020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
A Koloskova, N Loizou, S Boreiri, M Jaggi, SU Stich
ICML 2020 - International Conference on Machine Learning, 2020
1862020
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Updates
SU Stich, SP Karimireddy
Journal of Machine Learning Research 21, 1-36, 2020
138*2020
Decentralized Deep Learning with Arbitrary Communication Compression
A Koloskova, T Lin, SU Stich, M Jaggi
ICLR 2020 - International Conference on Learning Representations, 2020
1322020
Efficiency of the Accelerated Coordinate Descent Method on Structured Optimization Problems
Y Nesterov, SU Stich
SIAM Journal on Optimization 27 (1), 110-123, 2017
1322017
Is Local SGD Better than Minibatch SGD?
B Woodworth, KK Patel, SU Stich, Z Dai, B Bullins, HB McMahan, ...
ICML 2020 - International Conference on Machine Learning, 2020
1232020
Stochastic distributed learning with gradient quantization and variance reduction
S Horváth, D Kovalev, K Mishchenko, S Stich, P Richtárik
arXiv preprint arXiv:1904.05115, 2019
1142019
A Field Guide to Federated Optimization
J Wang, Z Charles, Z Xu, G Joshi, HB McMahan, M Al-Shedivat, G Andrew, ...
arXiv preprint arXiv:2107.06917, 2021
1032021
Dynamic Model Pruning with Feedback
T Lin, SU Stich, L Barba, D Dmitriev, M Jaggi
ICLR 2020 - International Conference on Learning Representations, 2020
962020
Breaking the centralized barrier for cross-device federated learning
SP Karimireddy, M Jaggi, S Kale, M Mohri, S Reddi, SU Stich, AT Suresh
NeurIPS 2021 - Advances in Neural Information Processing Systems 34, 2021
74*2021
Optimization of convex functions with random pursuit
SU Stich, CL Muller, B Gartner
SIAM Journal on Optimization 23 (2), 1284-1309, 2013
562013
On the Convergence of SGD with Biased Gradients
A Ajalloeian, SU Stich
ICML 2020 Workshop - Beyond First Order Methods in ML Systems, arXiv …, 2020
51*2020
Unified Optimal Analysis of the (Stochastic) Gradient Method
SU Stich
arXiv preprint arXiv:1907.04232, 2019
482019
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20