Auto-sklearn: Efficient and Robust Automated Machine Learning M Feurer, A Klein, K Eggensperger, JT Springenberg, M Blum, F Hutter Automated Machine Learning, 113-134, 2019 | 1036 | 2019 |
Efficient and robust automated machine learning M Feurer, A Klein, K Eggensperger, J Springenberg, M Blum, F Hutter Advances in Neural Information Processing Systems, 2962-2970, 2015 | 1034* | 2015 |
Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG RT Schirrmeister, JT Springenberg, LDJ Fiederer, M Glasstetter, ... arXiv preprint arXiv:1703.05051, 2017 | 725* | 2017 |
Towards an empirical foundation for assessing bayesian optimization of hyperparameters K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, ... NeurIPS workshop on Bayesian Optimization in Theory and Practice 10, 2013 | 244 | 2013 |
Efficient benchmarking of hyperparameter optimizers via surrogates K Eggensperger, F Hutter, HH Hoos, K Leyton-brown Proceedings of the 29th AAAI Conference on Artificial Intelligence, 1114-1120, 2015 | 81* | 2015 |
Practical Automated Machine Learning for the AutoML Challenge 2018 M Feurer, K Eggensperger, S Falkner, M Lindauer, F Hutter ICML 2018 AutoML Workshop, 2018 | 46 | 2018 |
Smac v3: Algorithm Configuration in Python M Lindauer, K Eggensperger, M Feurer, S Falkner, A Biedenkapp, ... 2017, 2017 | 38 | 2017 |
Efficient Benchmarking of Algorithm Configurators via Model-based Surrogates K Eggensperger, M Lindauer, HH Hoos, F Hutter, K Leyton-Brown Machine Learning 101 (1), 15-41, 2018 | 31 | 2018 |
Efficient Parameter Importance Analysis via Ablation with Surrogates A Biedenkapp, M Lindauer, K Eggensperger, F Hutter, C Fawcett, ... Proceedings of the AAAI conference, 2017 | 22 | 2017 |
Pitfalls and Best Practices in Algorithm Configuration K Eggensperger, M Lindauer, F Hutter Journal of Artificial Intelligence Research (JAIR) 64, 861-893, 2019 | 18 | 2019 |
Neural Networks for Predicting Algorithm Runtime Distributions K Eggensperger, M Lindauer, F Hutter Proceedings of the International Joint Conference on Artificial Intelligence …, 2018 | 12 | 2018 |
Automatic Bone Parameter Estimation for Skeleton Tracking in Optical Motion Capture T Schubert, K Eggensperger, A Gkogkidis, F Hutter, T Ball, W Burgard Proceedings of the IEEE International Conference on Robotics and Automation …, 2016 | 11 | 2016 |
Auto-Sklearn 2.0: The Next Generation M Feurer, K Eggensperger, S Falkner, M Lindauer, F Hutter arXiv preprint arXiv:2007.04074, 2020 | 9 | 2020 |
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters M Lindauer, K Eggensperger, M Feurer, A Biedenkapp, J Marben, ... arXiv preprint arXiv:1908.06756, 2019 | 9 | 2019 |
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters M Lindauer, M Feurer, K Eggensperger, A Biedenkapp, F Hutter arXiv preprint arXiv:1908.06674, 2019 | 2 | 2019 |
Designing and Understanding Convolutional Networks for Decoding Executed Movements from EEG RT Schirrmeister, LDJ Fiederer, JT Springenberg, M Glasstetter, ... The First Biannual Neuroadaptive Technology Conference, 143, 2017 | 2 | 2017 |
Hyperparameter Optimization for Machine Learning Problems in BCI A Meinel, K Eggensperger, M Tangermann, F Hutter Proceedings of the 6th International Brain-Computer Interface Meeting: BCI …, 2016 | 1 | 2016 |
Squirrel: A Switching Hyperparameter Optimizer N Awad, G Shala, D Deng, N Mallik, M Feurer, K Eggensperger, ... arXiv preprint arXiv:2012.08180, 2020 | | 2020 |
Neural Model-based Optimization with Right-Censored Observations K Eggensperger, K Haase, P Müller, M Lindauer, F Hutter arXiv preprint arXiv:2009.13828, 2020 | | 2020 |
Filtering Outliers in Bayesian Optimization R Martinez-Cantin, K Tee, M McCourt, K Eggensperger | | |