Moa: Massive online analysis, a framework for stream classification and clustering A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl Proceedings of the First Workshop on Applications of Pattern Analysis, 44-50, 2010 | 1648 | 2010 |
An introduction to computational networks and the computational network toolkit D Yu, A Eversole, M Seltzer, K Yao, Z Huang, B Guenter, O Kuchaiev, ... Microsoft Technical Report MSR-TR-2014–112, 2014 | 428 | 2014 |
Preliminary Mariner 9 report on the geology of Mars JF McCauley, MH Carr, JA Cutts, WK Hartmann, H Masursky, DJ Milton, ... Icarus 17 (2), 289-327, 1972 | 318 | 1972 |
The ClusTree: indexing micro-clusters for anytime stream mining P Kranen, I Assent, C Baldauf, T Seidl Knowledge and information systems 29 (2), 249-272, 2011 | 266 | 2011 |
Anyout: Anytime outlier detection on streaming data I Assent, P Kranen, C Baldauf, T Seidl International Conference on Database Systems for Advanced Applications, 228-242, 2012 | 104 | 2012 |
An effective evaluation measure for clustering on evolving data streams H Kremer, P Kranen, T Jansen, T Seidl, A Bifet, G Holmes, B Pfahringer Proceedings of the 17th ACM SIGKDD international conference on Knowledge …, 2011 | 98 | 2011 |
Self-adaptive anytime stream clustering P Kranen, I Assent, C Baldauf, T Seidl 2009 Ninth IEEE International Conference on Data Mining, 249-258, 2009 | 78 | 2009 |
Efficient emd-based similarity search in multimedia databases via flexible dimensionality reduction M Wichterich, I Assent, P Kranen, T Seidl Proceedings of the 2008 ACM SIGMOD International Conference on Management of …, 2008 | 71 | 2008 |
Indexing density models for incremental learning and anytime classification on data streams T Seidl, I Assent, P Kranen, R Krieger, J Herrmann Proceedings of the 12th international conference on extending database …, 2009 | 63 | 2009 |
MOA: a real-time analytics open source framework A Bifet, G Holmes, B Pfahringer, J Read, P Kranen, H Kremer, T Jansen, ... Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011 | 53 | 2011 |
Harnessing the strengths of anytime algorithms for constant data streams P Kranen, T Seidl Data Mining and Knowledge Discovery 19 (2), 245-260, 2009 | 40 | 2009 |
Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA P Kranen, H Kremer, T Jansen, T Seidl, A Bifet, G Holmes, B Pfahringer 2010 IEEE International Conference on Data Mining Workshops, 1400-1403, 2010 | 30 | 2010 |
Massive online analysis manual A Bifet, R Kirkby, P Kranen, P Reutemann University of Waikato, New Zealand: Centre for Open Software Innovation, 2009 | 28 | 2009 |
Stream data mining using the MOA framework P Kranen, H Kremer, T Jansen, T Seidl, A Bifet, G Holmes, B Pfahringer, ... International Conference on Database Systems for Advanced Applications, 309-313, 2012 | 25 | 2012 |
Precise anytime clustering of noisy sensor data with logarithmic complexity M Hassani, P Kranen, T Seidl Proceedings of the Fifth International Workshop on Knowledge Discovery from …, 2011 | 23 | 2011 |
Subspace anytime stream clustering M Hassani, P Kranen, R Saini, T Seidl Proceedings of the 26th International Conference on Scientific and …, 2014 | 18 | 2014 |
MC-tree: Improving bayesian anytime classification P Kranen, S Günnemann, S Fries, T Seidl International Conference on Scientific and Statistical Database Management …, 2010 | 17 | 2010 |
Mobile mining and information management in healthnet scenarios P Kranen, D Kensche, S Kim, N Zimmermann, E Müller, C Quix, X Li, ... The Ninth International Conference on Mobile Data Management (mdm 2008), 215-216, 2008 | 17 | 2008 |
Massive Online Analysis A Bifet, R Kirkby, P Kranen, P Reutemann Technical Manual, University of Waikato, 2009 | 11 | 2009 |
Hierarchical clustering for real-time stream data with noise P Kranen, F Reidl, FS Villaamil, T Seidl International Conference on Scientific and Statistical Database Management …, 2011 | 9 | 2011 |