Jean Taylor
Jean Taylor
Visiting Academic, University of California, Berkeley (Prof Emerita, Rutgers University, former
Verified email at - Homepage
Cited by
Cited by
The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces
JE Taylor
Annals of Mathematics, 489-539, 1976
Overview No. 98 I—Geometric models of crystal growth
JE Taylor, JW Cahn, CA Handwerker
Acta Metallurgica et Materialia 40 (7), 1443-1474, 1992
Curvature-driven flows: a variational approach
F Almgren, JE Taylor, L Wang
SIAM Journal on Control and Optimization 31 (2), 387-438, 1993
A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation
JW Cahn, JE Taylor
Acta Materialia 52 (16), 4887-4898, 2004
Overview no. 113 surface motion by surface diffusion
JW Cahn, JE Taylor
Acta metallurgica et materialia 42 (4), 1045-1063, 1994
II—mean curvature and weighted mean curvature
JE Taylor
Acta metallurgica et materialia 40 (7), 1475-1485, 1992
Crystalline variational problems
JE Taylor
Bulletin of the American Mathematical Society 84 (4), 568-588, 1978
Wulff construction, A global shape from local interaction
JE Taylor, R Dobrushin, R Kotecky, S Shlosman
Bulletin of the American Mathematical Society 31 (2), 291-295, 1994
Linking anisotropic sharp and diffuse surface motion laws via gradient flows
JE Taylor, JW Cahn
Journal of Statistical Physics 77 (1), 183-197, 1994
The geometry of soap films and soap bubbles
FJ Almgren, JE Taylor
Scientific American 235, 82-93, 1976
Almgren's big regularity paper: Q-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2
V Scheffer, JE Taylor
World scientific, 2000
Almgren's big regularity paper
V Scheffer, JE Taylor
World Scientific, 2000
Which distributions of matter diffract? An initial investigation
E Bombieri, JE Taylor
Le Journal de Physique Colloques 47 (C3), C3-19-C3-28, 1986
Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces
WC Carter, AR Roosen, JW Cahn, JE Taylor
Acta metallurgica et materialia 43 (12), 4309-4323, 1995
Motion of curves by crystalline curvature, including triple junctions and boundary points
JE Taylor
Proc. Symp. Pure Math 54, 417-438, 1993
Constructions and conjectures in crystalline nondifferential geometry
JE Taylor
Proceedings of the Conference on Differential Geometry, Rio de Janeiro …, 1991
Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces
JE Taylor, JW Cahn
Physica D: Nonlinear Phenomena 112 (3), 381-411, 1998
Quasicrystals, tilings, and algebraic number theory: some preliminary connections
E Bombieri, JE Taylor
Contemp. Math 64, 241-264, 1987
Flat flow is motion by crystalline curvature for curves with crystalline energies
F Almgren, JE Taylor
J. Differential Geom 42 (1), 1-22, 1995
Modeling crystal growth in a diffusion field using fully faceted interfaces
AR Roosen, JE Taylor
Journal of computational physics 114 (1), 113-128, 1994
The system can't perform the operation now. Try again later.
Articles 1–20