Follow
Christian Schroeder de Witt
Christian Schroeder de Witt
Verified email at robots.ox.ac.uk - Homepage
Title
Cited by
Cited by
Year
Monotonic value function factorisation for deep multi-agent reinforcement learning
T Rashid, M Samvelyan, C Schroeder de Witt, G Farquhar, JN Foerster, ...
Journal of Machine Learning Research 21, 2020
21022020
The Starcraft Multi-Agent Challenge
M Samvelyan, T Rashid, C Schroeder de Witt, G Farquhar, N Nardelli, ...
AAMAS 2019, 2019
9042019
Is independent learning all you need in the starcraft multi-agent challenge?
CS De Witt, T Gupta, D Makoviichuk, V Makoviychuk, PHS Torr, M Sun, ...
arXiv preprint arXiv:2011.09533, 2020
2332020
FACMAC: Factored Multi-Agent Centralised Policy Gradients
B Peng, T Rashid, C Schroeder de Witt, PA Kamienny, P Torr, W Böhmer, ...
Advances in Neural Information Processing Systems 34, 2021
1662021
Multi-Agent Common Knowledge Reinforcement Learning
C Schroeder de Witt, J Foerster, G Farquhar, P Torr, W Boehmer, ...
Advances in Neural Information Processing Systems, 9927-9939, 2019
111*2019
Randomized entity-wise factorization for multi-agent reinforcement learning
S Iqbal, CAS De Witt, B Peng, W Böhmer, S Whiteson, F Sha
International Conference on Machine Learning, 4596-4606, 2021
72*2021
Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control
C Schroeder de Witt, B Peng, PA Kamienny, P Torr, W Böhmer, ...
arXiv preprint arXiv:2003.06709, 2020
722020
The ZX-Calculus is Incomplete for Quantum Mechanics
C Schroeder de Witt, V Zamdzhiev
Quantum Physics and Logic (QPL) 2014, 2014
44*2014
Model-free opponent shaping
C Lu, T Willi, CAS De Witt, J Foerster
International Conference on Machine Learning, 14398-14411, 2022
382022
Discovered policy optimisation
C Lu, J Kuba, A Letcher, L Metz, C Schroeder de Witt, J Foerster
Advances in Neural Information Processing Systems 35, 16455-16468, 2022
352022
Safe Screening for Support Vector Machines
J Zimmert, C Schroeder de Witt, G Kerg, M Kloft
"Optimization in Machine Learning (OPT)" Workshop @ NIPS 2015, 2015
222015
Rainbench: Towards data-driven global precipitation forecasting from satellite imagery
CS de Witt, C Tong, V Zantedeschi, D De Martini, A Kalaitzis, M Chantry, ...
Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 14902 …, 2021
21*2021
Mirror learning: A unifying framework of policy optimisation
J Grudzien, CAS De Witt, J Foerster
International Conference on Machine Learning, 7825-7844, 2022
18*2022
Equivariant networks for zero-shot coordination
D Muglich, C Schroeder de Witt, E van der Pol, S Whiteson, J Foerster
Advances in Neural Information Processing Systems 35, 6410-6423, 2022
142022
Hijacking Malaria Simulators with Probabilistic Programming
B Gram-Hansen, C Schröder de Witt, T Rainforth, PHS Torr, YW Teh, ...
"AI for Social Good Workshop" @ ICML 2019, 2019
14*2019
Perfectly Secure Steganography Using Minimum Entropy Coupling
C Schroeder de Witt*, S Sokota*, JZ Kolter, J Foerster, M Strohmeier
ICLR 2023 (featured by Scientific American, Quanta Magazine, Bruce Schneier …, 2023
12*2023
Is independent learning all you need in the starcraft multi-agent challenge?
C Schroeder de Witt, T Gupta, D Makoviichuk, V Makoviychuk, PHS Torr, ...
arXiv e-prints, arXiv: 2011.09533, 2020
112020
Artificial Intelligence & Climate Change: Supplementary Impact Report
T Walsh, A Evatt, C Schroeder de Witt
112020
Amortized Rejection Sampling in Universal Probabilistic Programming
FW Saeid Naderiparizi, Adam Ścibior, Andreas Munk, Mehrdad Ghadiri, Atılım ...
AISTATS 2022, 2022
8*2022
Revealing robust oil and gas company macro-strategies using deep multi-agent reinforcement learning
D Radovic, L Kruitwagen, CS de Witt, B Caldecott, S Tomlinson, ...
arXiv preprint arXiv:2211.11043, 2022
7*2022
The system can't perform the operation now. Try again later.
Articles 1–20