Differential evolution for multiobjective optimization T Robič, B Filipič International conference on evolutionary multi-criterion optimization, 520-533, 2005 | 824 | 2005 |
COCO: A platform for comparing continuous optimizers in a black-box setting N Hansen, A Auger, R Ros, O Mersmann, T Tušar, D Brockhoff Optimization Methods and Software 36 (1), 114-144, 2021 | 529 | 2021 |
Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method T Tušar, B Filipič IEEE Transactions on Evolutionary Computation 19 (2), 225-245, 2014 | 276 | 2014 |
Differential evolution versus genetic algorithms in multiobjective optimization T Tušar, B Filipič International Conference on Evolutionary Multi-Criterion Optimization, 257-271, 2007 | 193 | 2007 |
COCO: performance assessment N Hansen, A Auger, D Brockhoff, D Tušar, T Tušar arXiv preprint arXiv:1605.03560, 2016 | 109 | 2016 |
Data management in the mirabel smart grid system M Boehm, L Dannecker, A Doms, E Dovgan, B Filipič, U Fischer, ... Proceedings of the 2012 Joint EDBT/ICDT Workshops, 95-102, 2012 | 88 | 2012 |
COCO: the bi-objective black box optimization benchmarking (bbob-biobj) test suite T Tušar, D Brockhoff, N Hansen, A Auger ArXiv e-prints, 2016 | 78* | 2016 |
GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models M Mlakar, D Petelin, T Tušar, B Filipič European Journal of Operational Research 243 (2), 347-361, 2015 | 76 | 2015 |
A comparative study of stochastic optimization methods in electric motor design T Tušar, P Korošec, G Papa, B Filipič, J Šilc Applied Intelligence 27, 101-111, 2007 | 67 | 2007 |
Open issues in surrogate-assisted optimization J Stork, M Friese, M Zaefferer, T Bartz-Beielstein, A Fischbach, ... High-performance simulation-based optimization, 225-244, 2020 | 54 | 2020 |
Mixed-integer benchmark problems for single-and bi-objective optimization T Tušar, D Brockhoff, N Hansen Proceedings of the Genetic and Evolutionary Computation Conference, 718-726, 2019 | 53 | 2019 |
COCO: The experimental procedure N Hansen, T Tusar, O Mersmann, A Auger, D Brockhoff arXiv preprint arXiv:1603.08776, 2016 | 51 | 2016 |
A study of overfitting in optimization of a manufacturing quality control procedure T Tušar, K Gantar, V Koblar, B Ženko, B Filipič Applied Soft Computing 59, 77-87, 2017 | 49 | 2017 |
COCO: A platform for comparing continuous optimizers in a black-box setting. ArXiv e-prints N Hansen, A Auger, O Mersmann, T Tušar, D Brockhoff arXiv preprint arXiv:1603.08785 172, 2016 | 33 | 2016 |
Evolutionary scheduling of flexible offers for balancing electricity supply and demand T Tušar, E Dovgan, B Filipič 2012 IEEE Congress on Evolutionary Computation, 1-8, 2012 | 33 | 2012 |
Anytime performance assessment in blackbox optimization benchmarking N Hansen, A Auger, D Brockhoff, T Tušar IEEE Transactions on Evolutionary Computation 26 (6), 1293-1305, 2022 | 32 | 2022 |
Comparing solutions under uncertainty in multiobjective optimization M Mlakar, T Tušar, B Filipič Mathematical Problems in Engineering 2014 (1), 817964, 2014 | 31 | 2014 |
A taxonomy of methods for visualizing pareto front approximations B Filipič, T Tušar Proceedings of the genetic and evolutionary computation conference, 649-656, 2018 | 30 | 2018 |
Single-and multi-objective game-benchmark for evolutionary algorithms V Volz, B Naujoks, P Kerschke, T Tušar Proceedings of the Genetic and Evolutionary Computation Conference, 647-655, 2019 | 29 | 2019 |
Preliminary numerical experiments in multiobjective optimization of a metallurgical production process B Filipic, T Tušar, E Laitinen Informatica 31 (2), 2007 | 28 | 2007 |