Jan Behmann
Jan Behmann
Geverifieerd e-mailadres voor bayer.com
Titel
Geciteerd door
Geciteerd door
Jaar
Low-cost 3D systems: suitable tools for plant phenotyping
S Paulus, J Behmann, AK Mahlein, L Plümer, H Kuhlmann
Sensors 14 (2), 3001-3018, 2014
2182014
Detection of early plant stress responses in hyperspectral images
J Behmann, J Steinrücken, L Plümer
ISPRS Journal of Photogrammetry and Remote Sensing 93, 98-111, 2014
1872014
A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
J Behmann, AK Mahlein, T Rumpf, C Römer, L Plümer
Precision Agriculture 16 (3), 239-260, 2015
1702015
Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis
C Römer, M Wahabzada, A Ballvora, F Pinto, M Rossini, C Panigada, ...
Functional Plant Biology 39 (11), 878-890, 2012
1352012
Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective
S Thomas, MT Kuska, D Bohnenkamp, A Brugger, E Alisaac, ...
Journal of Plant Diseases and Protection 125 (1), 5-20, 2018
892018
Hyperspectral sensors and imaging technologies in phytopathology: state of the art
AK Mahlein, MT Kuska, J Behmann, G Polder, A Walter
Annual review of phytopathology 56, 535-558, 2018
772018
Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection
J Behmann, K Acebron, D Emin, S Bennertz, S Matsubara, S Thomas, ...
Sensors 18 (2), 441, 2018
642018
Generation and application of hyperspectral 3D plant models: methods and challenges
J Behmann, AK Mahlein, S Paulus, J Dupuis, H Kuhlmann, EC Oerke, ...
Machine Vision and Applications 27 (5), 611-624, 2016
612016
Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping
J Behmann, AK Mahlein, S Paulus, H Kuhlmann, EC Oerke, L Plümer
ISPRS Journal of Photogrammetry and Remote Sensing 106, 172-182, 2015
542015
Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated phenotyping platform
S Thomas, J Behmann, A Steier, T Kraska, O Muller, U Rascher, ...
Plant Methods 14 (1), 1-12, 2018
532018
Hyperspectral quantification of wheat resistance to Fusarium head blight: Comparison of two Fusarium species
E Alisaac, J Behmann, MT Kuska, HW Dehne, AK Mahlein
European Journal of Plant Pathology 152 (4), 869-884, 2018
292018
Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring fusarium head blight of wheat on spikelet scale
AK Mahlein, E Alisaac, A Al Masri, J Behmann, HW Dehne, EC Oerke
Sensors 19 (10), 2281, 2019
272019
Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!
AK Mahlein, MT Kuska, S Thomas, M Wahabzada, J Behmann, ...
Current opinion in plant biology 50, 156-162, 2019
252019
Detection of disease symptoms on hyperspectral 3d plant models.
R Roscher, J Behmann, AK Mahlein, J Dupuis, H Kuhlmann, L Plümer
ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information …, 2016
252016
Evaluation of different fungicides and nitrogen rates on grain yield and bread-making quality in wheat affected by Septoria tritici blotch and yellow spot
AC Castro, MC Fleitas, M Schierenbeck, GS Gerard, MR Simón
Journal of cereal science 83, 49-57, 2018
172018
A multi-resolution approach for an automated fusion of different low-cost 3D sensors
J Dupuis, S Paulus, J Behmann, L Plümer, H Kuhlmann
Sensors 14 (4), 7563-7579, 2014
172014
Plant disease detection by hyperspectral imaging: from the lab to the field
AK Mahlein, MT Kuska, S Thomas, D Bohnenkamp, E Alisaac, J Behmann, ...
Advances in Animal Biosciences 8 (2), 238, 2017
152017
ORDINAL CLASSIFICATION FOR EFFICIENT PLANT STRESS PREDICTION IN HYPERSPECTRAL DATA.
J Behmann, P Schmitter, J Steinrücken, L Plümer
International Archives of the Photogrammetry, Remote Sensing & Spatial …, 2014
152014
Hyperspectral plant disease forecasting using generative adversarial networks
A Förster, J Behley, J Behmann, R Roscher
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium …, 2019
132019
In-field detection of yellow rust in wheat on the ground canopy and UAV scale
D Bohnenkamp, J Behmann, AK Mahlein
Remote Sensing 11 (21), 2495, 2019
132019
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20