Follow
Joaquin Vanschoren
Title
Cited by
Cited by
Year
Automated machine learning: methods, systems, challenges
F Hutter, L Kotthoff, J Vanschoren
Springer Nature, 2019
22052019
OpenML: networked science in machine learning
J Vanschoren, JN Van Rijn, B Bischl, L Torgo
ACM SIGKDD Explorations Newsletter 15 (2), 49-60, 2014
15202014
Meta-Learning: A Survey
J Vanschoren
arXiv preprint arXiv:1810.03548, 2018
8322018
Meta-learning
J Vanschoren
Automated machine learning: methods, systems, challenges, 35-61, 2019
3982019
An open source AutoML benchmark
P Gijsbers, E LeDell, J Thomas, S Poirier, B Bischl, J Vanschoren
arXiv preprint arXiv:1907.00909, 2019
3092019
Aslib: A benchmark library for algorithm selection
B Bischl, P Kerschke, L Kotthoff, M Lindauer, Y Malitsky, A Fréchette, ...
Artificial Intelligence 237, 41-58, 2016
2912016
Trustllm: Trustworthiness in large language models
Y Huang, L Sun, H Wang, S Wu, Q Zhang, Y Li, C Gao, Y Huang, W Lyu, ...
arXiv preprint arXiv:2401.05561, 2024
2212024
Effectiveness of random search in SVM hyper-parameter tuning
RG Mantovani, ALD Rossi, J Vanschoren, B Bischl, AC De Carvalho
2015 international joint conference on neural networks (IJCNN), 1-8, 2015
1862015
Importance of tuning hyperparameters of machine learning algorithms
HJP Weerts, AC Mueller, J Vanschoren
arXiv preprint arXiv:2007.07588, 2020
1792020
A survey of intelligent assistants for data analysis
F Serban, J Vanschoren, JU Kietz, A Bernstein
ACM Computing Surveys (CSUR) 45 (3), 1-35, 2013
1482013
Openml benchmarking suites
B Bischl, G Casalicchio, M Feurer, P Gijsbers, F Hutter, M Lang, ...
arXiv preprint arXiv:1708.03731, 2017
1452017
Hyper-parameter tuning of a decision tree induction algorithm
RG Mantovani, T Horváth, R Cerri, J Vanschoren, AC De Carvalho
2016 5th Brazilian Conference on Intelligent Systems (BRACIS), 37-42, 2016
1432016
Selecting classification algorithms with active testing
R Leite, P Brazdil, J Vanschoren
Machine Learning and Data Mining in Pattern Recognition: 8th International …, 2012
1412012
Meta-features for meta-learning
A Rivolli, LPF Garcia, C Soares, J Vanschoren, AC de Carvalho
Knowledge-Based Systems 240, 108101, 2022
1402022
Experiment databases. A new way to share, organize and learn from experiments
J Vanschoren, H Blockeel, B Pfahringer, G Holmes
Machine learning 87 (2), 127-158, 2012
1362012
Dataperf: Benchmarks for data-centric ai development
M Mazumder, C Banbury, X Yao, B Karlaš, W Gaviria Rojas, S Diamos, ...
Advances in Neural Information Processing Systems 36, 2024
1272024
The online performance estimation framework: heterogeneous ensemble learning for data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
Machine Learning 107, 149-176, 2018
1242018
OpenML: A collaborative science platform
JN Van Rijn, B Bischl, L Torgo, B Gao, V Umaashankar, S Fischer, ...
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2013
1062013
Openml-python: an extensible python api for openml
M Feurer, JN Van Rijn, A Kadra, P Gijsbers, N Mallik, S Ravi, A Müller, ...
Journal of Machine Learning Research 22 (100), 1-5, 2021
1042021
Fast algorithm selection using learning curves
JN van Rijn, SM Abdulrahman, P Brazdil, J Vanschoren
Advances in Intelligent Data Analysis XIV: 14th International Symposium, IDA …, 2015
1042015
The system can't perform the operation now. Try again later.
Articles 1–20