Follow
Joaquin Vanschoren
Title
Cited by
Cited by
Year
Automated machine learning: methods, systems, challenges
F Hutter, L Kotthoff, J Vanschoren
Springer Nature, 2019
16062019
OpenML: networked science in machine learning
J Vanschoren, JN Van Rijn, B Bischl, L Torgo
ACM SIGKDD Explorations Newsletter 15 (2), 49-60, 2014
12382014
Meta-learning: A survey
J Vanschoren
arXiv preprint arXiv:1810.03548, 2018
6812018
Meta-learning
J Vanschoren
Automated machine learning: methods, systems, challenges, 35-61, 2019
2962019
An open source AutoML benchmark
P Gijsbers, E LeDell, J Thomas, S Poirier, B Bischl, J Vanschoren
arXiv preprint arXiv:1907.00909, 2019
2522019
Aslib: A benchmark library for algorithm selection
B Bischl, P Kerschke, L Kotthoff, M Lindauer, Y Malitsky, A Fréchette, ...
Artificial Intelligence 237, 41-58, 2016
2422016
Openml benchmarking suites
B Bischl, G Casalicchio, M Feurer, P Gijsbers, F Hutter, M Lang, ...
arXiv preprint arXiv:1708.03731, 2017
1442017
Effectiveness of random search in SVM hyper-parameter tuning
RG Mantovani, ALD Rossi, J Vanschoren, B Bischl, AC De Carvalho
2015 international joint conference on neural networks (IJCNN), 1-8, 2015
1372015
A survey of intelligent assistants for data analysis
F Serban, J Vanschoren, JU Kietz, A Bernstein
ACM Computing Surveys (CSUR) 45 (3), 1-35, 2013
1372013
Selecting classification algorithms with active testing
R Leite, P Brazdil, J Vanschoren
Machine Learning and Data Mining in Pattern Recognition: 8th International …, 2012
1322012
Experiment databases. A new way to share, organize and learn from experiments
J Vanschoren, H Blockeel, B Pfahringer, G Holmes
Machine learning 87 (2), 127-158, 2012
1312012
The online performance estimation framework: heterogeneous ensemble learning for data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
Machine Learning 107, 149-176, 2018
1142018
Hyper-parameter tuning of a decision tree induction algorithm
RG Mantovani, T Horváth, R Cerri, J Vanschoren, AC De Carvalho
2016 5th Brazilian Conference on Intelligent Systems (BRACIS), 37-42, 2016
1122016
Importance of tuning hyperparameters of machine learning algorithms
HJP Weerts, AC Mueller, J Vanschoren
arXiv preprint arXiv:2007.07588, 2020
1112020
Fast algorithm selection using learning curves
JN van Rijn, SM Abdulrahman, P Brazdil, J Vanschoren
Advances in Intelligent Data Analysis XIV: 14th International Symposium, IDA …, 2015
952015
OpenML: A collaborative science platform
JN Van Rijn, B Bischl, L Torgo, B Gao, V Umaashankar, S Fischer, ...
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2013
892013
Meta-QSAR: a large-scale application of meta-learning to drug design and discovery
I Olier, N Sadawi, GR Bickerton, J Vanschoren, C Grosan, L Soldatova, ...
Machine Learning 107, 285-311, 2018
852018
Experiment databases: Towards an improved experimental methodology in machine learning
H Blockeel, J Vanschoren
European Conference on Principles of Data Mining and Knowledge Discovery, 6-17, 2007
772007
Data Augmentation using Conditional Generative Adversarial Networks for Leaf Counting in Arabidopsis Plants.
Y Zhu, M Aoun, M Krijn, J Vanschoren, HT Campus
BMVC, 324, 2018
762018
To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning
RG Mantovani, ALD Rossi, J Vanschoren, B Bischl, AC Carvalho
2015 International joint conference on neural networks (IJCNN), 1-8, 2015
722015
The system can't perform the operation now. Try again later.
Articles 1–20