Volgen
Bart Baesens
Bart Baesens
Full professor, KU Leuven
Geverifieerd e-mailadres voor kuleuven.be - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Benchmarking classification models for software defect prediction: A proposed framework and novel findings
S Lessmann, B Baesens, C Mues, S Pietsch
IEEE transactions on software engineering 34 (4), 485-496, 2008
13752008
Benchmarking state-of-the-art classification algorithms for credit scoring
B Baesens, T Van Gestel, S Viaene, M Stepanova, J Suykens, ...
Journal of the operational research society 54, 627-635, 2003
11682003
Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
S Lessmann, B Baesens, HV Seow, LC Thomas
European Journal of Operational Research 247 (1), 124-136, 2015
9212015
Benchmarking least squares support vector machine classifiers
T Van Gestel, JAK Suykens, B Baesens, S Viaene, J Vanthienen, ...
Machine learning 54, 5-32, 2004
8712004
Using neural network rule extraction and decision tables for credit-risk evaluation
B Baesens, R Setiono, C Mues, J Vanthienen
Management science 49 (3), 312-329, 2003
6582003
Comprehensible credit scoring models using rule extraction from support vector machines
D Martens, B Baesens, T Van Gestel, J Vanthienen
European journal of operational research 183 (3), 1466-1476, 2007
5532007
Classification with ant colony optimization
D Martens, M De Backer, R Haesen, J Vanthienen, M Snoeck, B Baesens
IEEE Transactions on Evolutionary Computation 11 (5), 651-665, 2007
5422007
New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
W Verbeke, K Dejaeger, D Martens, J Hur, B Baesens
European journal of operational research 218 (1), 211-229, 2012
4932012
An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
J Huysmans, K Dejaeger, C Mues, J Vanthienen, B Baesens
Decision Support Systems 51 (1), 141-154, 2011
4382011
APATE: A novel approach for automated credit card transaction fraud detection using network-based extensions
V Van Vlasselaer, C Bravo, O Caelen, T Eliassi-Rad, L Akoglu, M Snoeck, ...
Decision Support Systems 75, 38-48, 2015
4302015
Building comprehensible customer churn prediction models with advanced rule induction techniques
W Verbeke, D Martens, C Mues, B Baesens
Expert systems with applications 38 (3), 2354-2364, 2011
4242011
Credit Risk Management: Basic concepts: Financial risk components, Rating analysis, models, economic and regulatory capital
T Van Gestel, B Baesens
Oxford University Press, 2009
3732009
Analytics in a big data world: The essential guide to data science and its applications
B Baesens
John Wiley & Sons, 2014
3242014
Editorial survey: swarm intelligence for data mining
D Martens, B Baesens, T Fawcett
Machine learning 82, 1-42, 2011
2892011
A comparison of state‐of‐the‐art classification techniques for expert automobile insurance claim fraud detection
S Viaene, RA Derrig, B Baesens, G Dedene
Journal of Risk and Insurance 69 (3), 373-421, 2002
2852002
Transformational issues of big data and analytics in networked business
B Baesens, R Bapna, JR Marsden, J Vanthienen, JL Zhao
MIS quarterly 40 (4), 807-818, 2016
2842016
Modeling churn using customer lifetime value
N Glady, B Baesens, C Croux
European Journal of Operational Research 197 (1), 402-411, 2009
2822009
Bayesian neural network learning for repeat purchase modelling in direct marketing
B Baesens, S Viaene, D Van den Poel, J Vanthienen, G Dedene
European Journal of Operational Research 138 (1), 191-211, 2002
2782002
Data mining techniques for software effort estimation: a comparative study
K Dejaeger, W Verbeke, D Martens, B Baesens
IEEE transactions on software engineering 38 (2), 375-397, 2011
2642011
Fraud analytics using descriptive, predictive, and social network techniques: a guide to data science for fraud detection
B Baesens, V Van Vlasselaer, W Verbeke
John Wiley & Sons, 2015
2592015
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20