Volgen
Caner Hazirbas
Caner Hazirbas
Meta AI
Geverifieerd e-mailadres voor hazirbas.com - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Flownet: Learning optical flow with convolutional networks
A Dosovitskiy, P Fischer, E Ilg, P Hausser, C Hazirbas, V Golkov, ...
International Conference on Computer Vision (ICCV), 2758-2766, 2015
3791*2015
FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture
C Hazirbas, L Ma, C Domokos, D Cremers
Asian Conference on Computer Vision (ACCV), 2016
5782016
Image-based localization using LSTMs for structured feature correlation
F Walch, C Hazirbas, L Leal-Taixé, T Sattler, S Hilsenbeck, D Cremers
International Conference on Computer Vision (ICCV), 2017
4652017
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems
T Meinhardt, M Möller, C Hazirbas, D Cremers
International Conference on Computer Vision (ICCV), 2017
2932017
What makes good synthetic training data for learning disparity and optical flow estimation?
N Mayer, E Ilg, P Fischer, C Hazirbas, D Cremers, A Dosovitskiy, T Brox
International Journal of Computer Vision (IJCV), 1-19, 2018
1872018
CAPTCHA Recognition with Active Deep Learning
F Stark, C Hazirbas, R Triebel, D Cremers
German Conference on Pattern Recognition Workshop (GCPRW), 94, 2015
1202015
Deep depth from focus
C Hazirbas, SG Soyer, MC Staab, L Leal-Taixé, D Cremers
Asian Conference on Computer Vision (ACCV), 2018
762018
Towards measuring fairness in AI: the Casual Conversations dataset
C Hazirbas, J Bitton, B Dolhansky, J Pan, A Gordo, CC Ferrer
arXiv preprint arXiv:2104.02821, 2021
39*2021
Interactive Multi-label Segmentation of RGB-D Images
J Diebold, N Demmel, C Hazirbas, M Möller, D Cremers
Scale Space and Variational Methods in Computer Vision (SSVM), 294-306, 2015
142015
Deep Learning for Image-Based Localization
F Walch, D Cremers, S Hilsenbeck, C Hazirbas, L Leal-Taixé
Master’s thesis, 2016
82016
Smagt P. vd, Cremers D., and Brox T.,“
A Dosovitskiy, P Fischer, E Ilg, P Hausser, C Hazırbas, V Golkov
Flownet: Learning optical flow with convolutional networks,” in 2015 IEEE …, 2015
82015
Towards Measuring Fairness in Speech Recognition: Casual Conversations Dataset Transcriptions
C Liu, M Picheny, L Sarı, P Chitkara, A Xiao, X Zhang, M Chou, ...
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
62022
Generating High Fidelity Data from Low-density Regions using Diffusion Models
V Sehwag, C Hazirbas, A Gordo, F Ozgenel, C Canton
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
52022
Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation
C Hazirbas, J Diebold, D Cremers
Scale Space and Variational Methods in Computer Vision (SSVM) 9087, 243-255, 2015
5*2015
Fairness Indicators for Systematic Assessments of Visual Feature Extractors
P Goyal, AR Soriano, C Hazirbas, L Sagun, N Usunier
arXiv preprint arXiv:2202.07603, 2022
22022
Localized Uncertainty Attacks
OA Dia, T Karaletsos, C Hazirbas, CC Ferrer, IK Kabul, E Meijer
CVPRW on Adversarial Machine Learning in Real-World Computer Vision Systems …, 2021
22021
Image processing using a convolutional neural network
C Schroers, F Perazzi, C Hazirbas
US Patent 10,706,503, 2020
12020
Casual Conversations v2: Designing a large consent-driven dataset to measure algorithmic bias and robustness
C Hazirbas, Y Bang, T Yu, P Assar, B Porgali, V Albiero, S Hermanek, ...
arXiv preprint arXiv:2211.05809, 2022
2022
ImageNet-X: Understanding Model Mistakes with Factor of Variation Annotations
BY Idrissi, D Bouchacourt, R Balestriero, I Evtimov, C Hazirbas, N Ballas, ...
arXiv preprint arXiv:2211.01866, 2022
2022
Learning Geometry and Semantics for Deep Image Restoration
C Hazırbaş
Technische Universität München, 2019
2019
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20