Magnetic control of tokamak plasmas through deep reinforcement learning J Degrave, F Felici, J Buchli, M Neunert, B Tracey, F Carpanese, T Ewalds, ... Nature 602 (7897), 414-419, 2022 | 772 | 2022 |
Learning by playing solving sparse reward tasks from scratch M Riedmiller, R Hafner, T Lampe, M Neunert, J Degrave, T Wiele, V Mnih, ... International conference on machine learning, 4344-4353, 2018 | 494 | 2018 |
Lasagne: first release S Dieleman, J Schlüter, C Raffel, E Olson, SK Sønderby, D Nouri, ... Zenodo: Geneva, Switzerland 3, 74, 2015 | 414* | 2015 |
A Differentiable Physics Engine for Deep Learning in Robotics J Degrave, M Hermans, J Dambre, F wyffels arXiv preprint arXiv:1611.01652, 2016 | 245 | 2016 |
Relative entropy regularized policy iteration A Abdolmaleki, JT Springenberg, J Degrave, S Bohez, Y Tassa, D Belov, ... arXiv preprint arXiv:1812.02256, 2018 | 71 | 2018 |
Drelus: Dual rectified linear units F Godin, J Degrave, W De Neve arXiv preprint arXiv:1707.08214, 2017 | 68* | 2017 |
Shaking the foundations: delusions in sequence models for interaction and control PA Ortega, M Kunesch, G Delétang, T Genewein, J Grau-Moya, J Veness, ... arXiv preprint arXiv:2110.10819, 2021 | 55 | 2021 |
Self-supervised learning of image embedding for continuous control C Florensa, J Degrave, N Heess, JT Springenberg, M Riedmiller arXiv preprint arXiv:1901.00943, 2019 | 54 | 2019 |
Towards improved design and evaluation of epileptic seizure predictors I Korshunova, PJ Kindermans, J Degrave, T Verhoeven, BH Brinkmann, ... IEEE Transactions on Biomedical Engineering 65 (3), 502-510, 2017 | 52 | 2017 |
Morphological properties of mass–spring networks for optimal locomotion learning G Urbain, J Degrave, B Carette, J Dambre, F Wyffels Frontiers in neurorobotics 11, 16, 2017 | 51 | 2017 |
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs AT Spröwitz, A Tuleu, M Ajallooeian, M Vespignani, R Möckel, P Eckert, ... Frontiers in Robotics and AI 5, 67, 2018 | 49 | 2018 |
Bruno: A deep recurrent model for exchangeable data I Korshunova, J Degrave, F Huszár, Y Gal, A Gretton, J Dambre Advances in Neural Information Processing Systems 31, 2018 | 38 | 2018 |
Diego de las Casas J Degrave, F Felici, J Buchli, M Neunert, B Tracey, F Carpanese, T Ewalds, ... Magnetic control of tokamak plasmas through deep reinforcement learning, 2022 | 33 | 2022 |
Developing an embodied gait on a compliant quadrupedal robot J Degrave, K Caluwaerts, J Dambre, F Wyffels 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015 | 31 | 2015 |
Lasagne: First release.(2015) S Dieleman, J Schlüter, C Raffel, E Olson, SK Sønderby, D Nouri, ... URL http://dx. doi. org/10.5281/zenodo 27878, 2015 | 26 | 2015 |
Classifying plankton with deep neural networks, 2015 S Dieleman, A van den Oord, I Korshunova, J Burms, J Degrave, L Pigou, ... URL http://benanne. github. io/2015/03/17/plankton. html, 2015 | 26* | 2015 |
Transfer learning of gaits on a quadrupedal robot J Degrave, M Burm, PJ Kindermans, J Dambre, F Wyffels Adaptive Behavior 23 (2), 69-82, 2015 | 23 | 2015 |
Terrain classification for a quadruped robot J Degrave, R Van Cauwenbergh, F Wyffels, T Waegeman, B Schrauwen 2013 12th International Conference on Machine Learning and Applications 1 …, 2013 | 20 | 2013 |
Local search for policy iteration in continuous control JT Springenberg, N Heess, D Mankowitz, J Merel, A Byravan, ... arXiv preprint arXiv:2010.05545, 2020 | 18 | 2020 |
PLXTRM: Prediction-Led eXtended-guitar Tool for Real-time Music applications and live performance T Vets, J Degrave, L Nijs, F Bressan, M Leman Journal of New Music Research 46 (2), 187-200, 2017 | 10 | 2017 |