Deep learning with Gaussian differential privacy Z Bu, J Dong, Q Long, WJ Su Harvard data science review 2020 (23), 2020 | 19 | 2020 |
Algorithmic analysis and statistical estimation of slope via approximate message passing Z Bu, J Klusowski, C Rush, W Su Advances in Neural Information Processing Systems 32, 9361--9371, 2019 | 17 | 2019 |
Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing Z Bu, J Klusowski, C Rush, W Su IEEE Transactions on Information Theory 67 (1), 506 - 537, 2020 | 1 | 2020 |
Fast and Memory Efficient Differentially Private-SGD via JL Projections Z Bu, S Gopi, J Kulkarni, YT Lee, JH Shen, U Tantipongpipat arXiv preprint arXiv:2102.03013, 2021 | | 2021 |
DebiNet: Debiasing Linear Models with Nonlinear Overparameterized Neural Networks Z Bu, S Xu AISTATS 2021, 2020 | | 2020 |
A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks Z Bu, S Xu, K Chen AISTATS 2021, 2020 | | 2020 |
The Complete Lasso Tradeoff Diagram H Wang, Y Yang, Z Bu, W Su Advances in Neural Information Processing Systems 33, 2020 | | 2020 |
Asymptotic Analysis of Sparse Group LASSO via Approximate Message Passing Algorithm K Chen, S Xu, Z Bu NeurIPS OPT workshop, 0 | | |
Efficient Designs Of SLOPE Penalty Sequences In Finite Dimension Y Zhang, Z Bu AISTATS 2021, 0 | | |