Active learning for sentiment analysis on data streams: Methodology and workflow implementation in the ClowdFlows platform J Kranjc, J Smailović, V Podpečan, M Grčar, M Žnidaršič, N Lavrač Information Processing & Management 51 (2), 187-203, 2015 | 120 | 2015 |
Clowdflows: a cloud based scientific workflow platform J Kranjc, V Podpečan, N Lavrač Machine Learning and Knowledge Discovery in Databases: European Conference …, 2012 | 102 | 2012 |
ClowdFlows: Online workflows for distributed big data mining J Kranjc, R Orač, V Podpečan, N Lavrač, M Robnik-Šikonja Future Generation Computer Systems 68, 38-58, 2017 | 83 | 2017 |
Orange4WS environment for service-oriented data mining V Podpečan, M Zemenova, N Lavrač The Computer Journal 55 (1), 82-98, 2012 | 71 | 2012 |
Ménage à trois: unraveling the mechanisms regulating plant–microbe–arthropod interactions K Gruden, J Lidoy, M Petek, V Podpečan, V Flors, KK Papadopoulou, ... Trends in Plant Science 25 (12), 1215-1226, 2020 | 47 | 2020 |
Machine learning and data mining methods for managing Parkinson’s disease D Miljkovic, D Aleksovski, V Podpečan, N Lavrač, B Malle, A Holzinger Machine learning for health informatics: state-of-the-art and future …, 2016 | 47 | 2016 |
SegMine workflows for semantic microarray data analysis in Orange4WS V Podpečan, N Lavrač, I Mozetič, PK Novak, I Trajkovski, L Langohr, ... BMC bioinformatics 12, 1-16, 2011 | 40 | 2011 |
Analysis of glioblastoma patients' plasma revealed the presence of microRNAs with a prognostic impact on survival and those of viral origin A Herman, K Gruden, A Blejec, V Podpečan, H Motaln, P Rožman, ... PLoS One 10 (5), e0125791, 2015 | 38 | 2015 |
Signalling network construction for modelling plant defence response D Miljkovic, T Stare, I Mozetič, V Podpečan, M Petek, K Witek, ... PLoS One 7 (12), e51822, 2012 | 35 | 2012 |
Semantic subgroup explanations A Vavpetič, V Podpečan, N Lavrač Journal of Intelligent Information Systems 42, 233-254, 2014 | 22 | 2014 |
Karst exploration: extracting terms and definitions from karst domain corpus S Pollak, A Repar, M Martinc, V Podpečan Proceedings of eLex 2019, 934-956, 2019 | 21 | 2019 |
Conceptual representations for computational concept creation P Xiao, H Toivonen, O Gross, A Cardoso, J Correia, P Machado, P Martins, ... ACM Computing Surveys (CSUR) 52 (1), 1-33, 2019 | 18 | 2019 |
TermEnsembler: An ensemble learning approach to bilingual<? br?> term extraction and alignment A Repar, V Podpečan, A Vavpetič, N Lavrač, S Pollak Terminology 25 (1), 93-120, 2019 | 17 | 2019 |
Real-time data analysis in ClowdFlows J Kranjc, V Podpečan, N Lavrač 2013 IEEE International Conference on Big Data, 15-22, 2013 | 16 | 2013 |
Contrasting subgroup discovery L Langohr, V Podpečan, M Petek, I Mozetič, K Gruden, N Lavrač, ... The Computer Journal 56 (3), 289-303, 2013 | 16 | 2013 |
Interactive exploration of heterogeneous biological networks with Biomine Explorer V Podpečan, Ž Ramšak, K Gruden, H Toivonen, N Lavrač Bioinformatics 35 (24), 5385-5388, 2019 | 12 | 2019 |
Improved joint probabilistic data association (JPDA) filter using motion feature for multiple maneuvering targets in uncertain tracking situations E Fan, W Xie, J Pei, K Hu, X Li, V Podpečan Information 9 (12), 322, 2018 | 12 | 2018 |
Representation Learning: Propositionalization and Embeddings N Lavrač, V Podpečan, M Robnik-Šikonja Springer Nature, 2021 | 9 | 2021 |
EMBEDDIA tools, datasets and challenges: Resources and hackathon contributions S Pollak, M Robnik-Šikonja, M Purver, M Boggia, R Shekhar, M Pranjić, ... Proceedings of the EACL Hackashop on News Media Content Analysis and …, 2021 | 9 | 2021 |
Explaining subgroups through ontologies A Vavpetič, V Podpečan, S Meganck, N Lavrač PRICAI 2012: Trends in Artificial Intelligence: 12th Pacific Rim …, 2012 | 9 | 2012 |