Autoaugment: Learning augmentation strategies from data ED Cubuk, B Zoph, D Mane, V Vasudevan, QV Le Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 4540* | 2019 |
Specaugment: A simple data augmentation method for automatic speech recognition DS Park, W Chan, Y Zhang, CC Chiu, B Zoph, ED Cubuk, QV Le arXiv preprint arXiv:1904.08779, 2019 | 4054 | 2019 |
Randaugment: Practical automated data augmentation with a reduced search space ED Cubuk, B Zoph, J Shlens, QV Le Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 3896 | 2020 |
Fixmatch: Simplifying semi-supervised learning with consistency and confidence K Sohn, D Berthelot, N Carlini, Z Zhang, H Zhang, CA Raffel, ED Cubuk, ... Advances in neural information processing systems 33, 596-608, 2020 | 3608 | 2020 |
Augmix: A simple method to improve robustness and uncertainty under data shift D Hendrycks, N Mu, ED Cubuk, B Zoph, J Gilmer, B Lakshminarayanan International conference on learning representations 1 (2), 5, 2020 | 1487* | 2020 |
Realistic evaluation of deep semi-supervised learning algorithms A Oliver, A Odena, CA Raffel, ED Cubuk, I Goodfellow Advances in neural information processing systems 31, 2018 | 1225 | 2018 |
Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring D Berthelot, N Carlini, ED Cubuk, A Kurakin, K Sohn, H Zhang, C Raffel arXiv preprint arXiv:1911.09785, 2019 | 1221 | 2019 |
Simple copy-paste is a strong data augmentation method for instance segmentation G Ghiasi, Y Cui, A Srinivas, R Qian, TY Lin, ED Cubuk, QV Le, B Zoph Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 1068 | 2021 |
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ... arXiv preprint arXiv:2206.04615, 2022 | 976 | 2022 |
Rethinking pre-training and self-training B Zoph, G Ghiasi, TY Lin, Y Cui, H Liu, ED Cubuk, Q Le Advances in neural information processing systems 33, 3833-3845, 2020 | 728 | 2020 |
Learning data augmentation strategies for object detection B Zoph, ED Cubuk, G Ghiasi, TY Lin, J Shlens, QV Le Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 676 | 2020 |
A fourier perspective on model robustness in computer vision D Yin, R Gontijo Lopes, J Shlens, ED Cubuk, J Gilmer Advances in Neural Information Processing Systems 32, 2019 | 517 | 2019 |
A structural approach to relaxation in glassy liquids SS Schoenholz, ED Cubuk, E Kaxiras, AJ Liu Nature Physics 12, 469-471, 2016 | 464 | 2016 |
Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods ED Cubuk, SS Schoenholz, JM Rieser, BD Malone, J Rottler, DJ Durian, ... Physical Review Letters 114, 108001, 2015 | 451 | 2015 |
Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials AD Sendek, Q Yang, ED Cubuk, KAN Duerloo, Y Cui, EJ Reed Energy & Environmental Science 10 (1), 306-320, 2017 | 388 | 2017 |
Adversarial examples are a natural consequence of test error in noise J Gilmer, N Ford, N Carlini, E Cubuk International Conference on Machine Learning, 2280-2289, 2019 | 361* | 2019 |
Scaling deep learning for materials discovery A Merchant, S Batzner, SS Schoenholz, M Aykol, G Cheon, ED Cubuk Nature 624 (7990), 80-85, 2023 | 340 | 2023 |
Revisiting resnets: Improved training and scaling strategies I Bello, W Fedus, X Du, ED Cubuk, A Srinivas, TY Lin, J Shlens, B Zoph Advances in Neural Information Processing Systems 34, 22614-22627, 2021 | 335 | 2021 |
Unveiling the predictive power of static structure in glassy systems V Bapst, T Keck, A Grabska-Barwińska, C Donner, ED Cubuk, ... Nature physics 16 (4), 448-454, 2020 | 333 | 2020 |
Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling J Xie, AD Sendek, ED Cubuk, X Zhang, Z Lu, Y Gong, T Wu, F Shi, W Liu, ... Acs Nano 11 (7), 7019-7027, 2017 | 322 | 2017 |