On the sum of the Laplacian eigenvalues of a tree E Fritscher, C Hoppen, I Rocha, V Trevisan Linear Algebra Appl 435 (2), 371-399, 2011 | 81 | 2011 |

Eigenvalues and energy in threshold graphs DP Jacobs, V Trevisan, F Tura Linear Algebra and its Applications 465, 412-425, 2015 | 44 | 2015 |

Locating the eigenvalues of trees DP Jacobs, V Trevisan Linear Algebra and its Applications 434 (1), 81-88, 2011 | 41 | 2011 |

Eigenvalue location in threshold graphs DP Jacobs, V Trevisan, F Tura Linear Algebra and its applications 439 (10), 2762-2773, 2013 | 38 | 2013 |

Laplacian energy of diameter 3 trees V Trevisan, JB Carvalho, RR Del Vecchio, CTM Vinagre Applied mathematics letters 24 (6), 918-923, 2011 | 36 | 2011 |

Factorization properties of Chebyshev polynomials MO Rayes, V Trevisan, PS Wang Computers & Mathematics with Applications 50 (8-9), 1231-1240, 2005 | 36 | 2005 |

Distance-k knowledge in self-stabilizing algorithms W Goddard, ST Hedetniemi, DP Jacobs, V Trevisan Theoretical Computer Science 399 (1-2), 118-127, 2008 | 33 | 2008 |

Reducing the adjacency matrix of a tree G Fricke, S Hedetniemi, D Jacobs, V Trevisan The Electronic Journal of Linear Algebra 1, 1996 | 33 | 1996 |

Maximum Laplacian energy among threshold graphs CTM Vinagre, RR Del-Vecchio, DAR Justo, V Trevisan Linear Algebra and its Applications 439 (5), 1479-1495, 2013 | 22 | 2013 |

Exploring symmetries to decompose matrices and graphs preserving the spectrum E Fritscher, V Trevisan SIAM Journal on Matrix Analysis and Applications 37 (1), 260-289, 2016 | 21 | 2016 |

Characterizing trees with large Laplacian energy E Fritscher, C Hoppen, I Rocha, V Trevisan Linear Algebra and its Applications 442, 20-49, 2014 | 19 | 2014 |

Teoria espectral de grafos-uma introduçao N Abreu, R Del-Vecchio, V Trevisan, C Vinagre Notas do IIIo Colóquio de Matemática da Regiao Sul, Florianópolis, Santa …, 2014 | 19 | 2014 |

The determinant of a tree's neighborhood matrix DP Jacobs, V Trevisan Linear algebra and its applications 256, 235-249, 1997 | 19 | 1997 |

Polynomial factorization: Sharp bounds, efficient algorithms B Beauzamy, V Trevisan, PS Wang Journal of symbolic computation 15 (4), 393-413, 1993 | 19 | 1993 |

Bounding the sum of the largest Laplacian eigenvalues of graphs I Rocha, V Trevisan Discrete Applied Mathematics 170, 95-103, 2014 | 18 | 2014 |

Computing the Laplacian spectra of some graphs DM Cardoso, EA Martins, M Robbiano, V Trevisan Discrete Applied Mathematics 160 (18), 2645-2654, 2012 | 18 | 2012 |

Distance-k information in self-stabilizing algorithms W Goddard, ST Hedetniemi, DP Jacobs, V Trevisan International Colloquium on Structural Information and Communication …, 2006 | 17 | 2006 |

On the distribution of Laplacian eigenvalues of trees RO Braga, VM Rodrigues, V Trevisan Discrete Mathematics 313 (21), 2382-2389, 2013 | 16 | 2013 |

Complementary eigenvalues of graphs R Fernandes, J Judice, V Trevisan Linear Algebra and its Applications 527, 216-231, 2017 | 14 | 2017 |

How to Construct the Characteristic Polynomial of a Tree's Adjacency Matrix DP Jacobs, V Trevisan | 14 | 1996 |