A Comparison of String Distance Metrics for Name-Matching Tasks. WW Cohen, P Ravikumar, SE Fienberg
IIWeb 3, 73-78, 2003
2086 2003 A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers S Negahban, P Ravikumar, MJ Wainwright, B Yu
Statistical Science 27 (4), 538-557, 2012
1600 2012 Learning with noisy labels N Natarajan, I Dhillon, P Ravikumar, A Tewari
Advances in Neural Information Processing Systems (NIPS) 26, 1196-1204, 2013
1387 2013 High-dimensional Ising model selection using ℓ1-regularized logistic regression P Ravikumar, MJ Wainwright, JD Lafferty
The Annals of Statistics 38 (3), 1287-1319, 2010
1209 2010 High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence P Ravikumar, MJ Wainwright, G Raskutti, B Yu
Electronic Journal of Statistics 5, 935-980, 2011
1056 2011 Dags with no tears: Continuous optimization for structure learning X Zheng, B Aragam, PK Ravikumar, EP Xing
Advances in neural information processing systems 31, 2018
951 2018 A comparison of string metrics for matching names and records W Cohen, P Ravikumar, S Fienberg
Workshop on Data Cleaning, Record Linkage, and Object Consolidation at Int …, 2003
870 2003 Sparse additive models P Ravikumar, J Lafferty, H Liu, L Wasserman
Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2009
840 2009 Adaptive name matching in information integration M Bilenko, R Mooney, W Cohen, P Ravikumar, S Fienberg
Intelligent Systems, IEEE 18 (5), 16-23, 2003
765 2003 Information-theoretic lower bounds on the oracle complexity of convex optimization A Agarwal, MJ Wainwright, PL Bartlett, P Ravikumar
IEEE Transactions on Information Theory 58 (5), 3235-3249, 2012
511 2012 A dirty model for multi-task learning A Jalali, P Ravikumar, S Sanghavi, C Ruan
Advances in Neural Information Processing Systems (NIPS) 23, 964-972, 2010
488 2010 On the (in) fidelity and sensitivity of explanations CK Yeh, CY Hsieh, A Suggala, DI Inouye, PK Ravikumar
Advances in neural information processing systems 32, 2019
483 2019 Sparse inverse covariance matrix estimation using quadratic approximation CJ Hsieh, IS Dhillon, P Ravikumar, MA Sustik
Advances in Neural Information Processing Systems (NIPS) 24, 2330-2338, 2011
429 2011 Collaborative filtering with graph information: Consistency and scalable methods N Rao, HF Yu, PK Ravikumar, IS Dhillon
Advances in neural information processing systems 28, 2015
345 2015 On completeness-aware concept-based explanations in deep neural networks CK Yeh, B Kim, S Arik, CL Li, T Pfister, P Ravikumar
Advances in neural information processing systems 33, 20554-20565, 2020
342 * 2020 The risks of invariant risk minimization E Rosenfeld, P Ravikumar, A Risteski
arXiv preprint arXiv:2010.05761, 2020
303 2020 Learning sparse nonparametric dags X Zheng, C Dan, B Aragam, P Ravikumar, E Xing
International Conference on Artificial Intelligence and Statistics, 3414-3425, 2020
275 2020 High-Dimensional Graphical Model Selection Using -Regularized Logistic Regression MJ Wainwright, JD Lafferty, PK Ravikumar
Advances in neural information processing systems, 1465-1472, 2007
272 2007 Representer point selection for explaining deep neural networks CK Yeh, J Kim, IEH Yen, PK Ravikumar
Advances in neural information processing systems 31, 2018
267 2018 Robust estimation via robust gradient estimation A Prasad, AS Suggala, S Balakrishnan, P Ravikumar
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2020
246 2020