The continuum limit of critical random graphs L Addario-Berry, N Broutin, C Goldschmidt Probability Theory and Related Fields 152 (3), 367-406, 2012 | 172 | 2012 |
The scaling limit of the minimum spanning tree of the complete graph L Addario-Berry, N Broutin, C Goldschmidt, G Miermont | 116 | 2017 |
Random recursive trees and the Bolthausen-Sznitman coalesent C Goldschmidt, J Martin | 115 | 2005 |
Critical random graphs: limiting constructions and distributional properties L Addario-Berry, N Broutin, C Goldschmidt | 77 | 2010 |
Quantum Heisenberg models and their probabilistic representations C Goldschmidt, D Ueltschi, P Windridge Entropy and the quantum II, Contemp. Math 552, 177-224, 2011 | 67 | 2011 |
A line-breaking construction of the stable trees C Goldschmidt, B Haas Electronic Journal of Probability 20, 1-24, 2015 | 45 | 2015 |
The stable graph: the metric space scaling limit of a critical random graph with iid power-law degrees G Conchon-Kerjan, C Goldschmidt The Annals of Probability 51 (1), 1-69, 2023 | 44* | 2023 |
Asymptotics of the allele frequency spectrum associated with the Bolthausen-Sznitman coalescent AL Basdevant, C Goldschmidt | 44 | 2008 |
Coagulation-Fragmentation Duality, Poisson: Dirichlet Distributions and Random Recursive Trees R Dong, C Goldschmidt, JB Martin The Annals of Applied Probability, 1733-1750, 2006 | 41 | 2006 |
Preservation of log-concavity on summation O Johnson, C Goldschmidt ESAIM: Probability and Statistics 10, 206-215, 2006 | 40 | 2006 |
Parking on a random tree C Goldschmidt, M Przykucki Combinatorics, Probability and Computing 28 (1), 23-45, 2019 | 35 | 2019 |
Behavior near the extinction time in self-similar fragmentations I: The stable case C Goldschmidt, B Haas Annales de l'IHP Probabilités et statistiques 46 (2), 338-368, 2010 | 29 | 2010 |
Dual random fragmentation and coagulation and an application to the genealogy of Yule processes J Bertoin, C Goldschmidt Mathematics and Computer Science III: Algorithms, Trees, Combinatorics and …, 2004 | 26 | 2004 |
Critical random hypergraphs: the emergence of a giant set of identifiable vertices C Goldschmidt | 20 | 2005 |
Moderate deviations of subgraph counts in the Erdős-Rényi random graphs 𝐺 (𝑛, 𝑚) and 𝐺 (𝑛, 𝑝) C Goldschmidt, S Griffiths, A Scott Transactions of the American Mathematical Society 373 (8), 5517-5585, 2020 | 18 | 2020 |
The Brownian continuum random tree as the unique solution to a fixed point equation M Albenque, C Goldschmidt | 18 | 2015 |
The scaling limit of a critical random directed graph C Goldschmidt, R Stephenson arXiv preprint arXiv:1905.05397, 2019 | 16 | 2019 |
Stable graphs: distributions and line-breaking construction C Goldschmidt, B Haas, D Sénizergues arXiv preprint arXiv:1811.06940, 2018 | 15 | 2018 |
Voronoi tessellations in the CRT and continuum random maps of finite excess L Addario-Berry, O Angel, G Chapuy, É Fusy, C Goldschmidt Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete …, 2018 | 15 | 2018 |
Stable graphs: distributions and line-breaking construction C Goldschmidt, B Haas, D Sénizergues Annales Henri Lebesgue 5, 841-904, 2022 | 14 | 2022 |