Volgen
Jörg Sander
Jörg Sander
Professor, Computing Science, University of Alberta
Geverifieerd e-mailadres voor ualberta.ca
Titel
Geciteerd door
Geciteerd door
Jaar
A density-based algorithm for discovering clusters in large spatial databases with noise.
M Ester, HP Kriegel, J Sander, X Xu
kdd 96 (34), 226-231, 1996
274501996
LOF: identifying density-based local outliers
MM Breunig, HP Kriegel, RT Ng, J Sander
Proceedings of the 2000 ACM SIGMOD international conference on Management of …, 2000
81732000
OPTICS: Ordering points to identify the clustering structure
M Ankerst, MM Breunig, HP Kriegel, J Sander
ACM Sigmod record 28 (2), 49-60, 1999
55631999
Density-based clustering in spatial databases: The algorithm gdbscan and its applications
J Sander, M Ester, HP Kriegel, X Xu
Data mining and knowledge discovery 2, 169-194, 1998
18621998
Density-based clustering based on hierarchical density estimates
RJGB Campello, D Moulavi, J Sander
Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia …, 2013
14912013
DBSCAN revisited, revisited: why and how you should (still) use DBSCAN
E Schubert, J Sander, M Ester, HP Kriegel, X Xu
ACM Transactions on Database Systems (TODS) 42 (3), 1-21, 2017
14642017
Density‐based clustering
HP Kriegel, P Kröger, J Sander, A Zimek
Wiley interdisciplinary reviews: data mining and knowledge discovery 1 (3 …, 2011
9852011
Incremental generalization for mining in a data warehousing environment
M Ester, R Wittmann
Advances in Database Technology—EDBT'98: 6th International Conference on …, 1998
7841998
On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study
GO Campos, A Zimek, J Sander, RJGB Campello, B Micenková, ...
Data mining and knowledge discovery 30, 891-927, 2016
6182016
Hierarchical density estimates for data clustering, visualization, and outlier detection
RJGB Campello, D Moulavi, A Zimek, J Sander
ACM Transactions on Knowledge Discovery from Data (TKDD) 10 (1), 1-51, 2015
5552015
A distribution-based clustering algorithm for mining in large spatial databases
X Xu, M Ester, HP Kriegel, J Sander
Proceedings 14th International Conference on Data Engineering, 324-331, 1998
5291998
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)
M Ester, HP Kriegel, J Sander, X Xu, E Simoudis, J Han, U Fayyad
A density‐based algorithm for discovering clusters in large spatial …, 1996
511*1996
Spatial data mining: A database approach
M Ester, HP Kriegel, J Sander
SSD 97, 47-66, 1997
4281997
Knowledge discovery in databases: Techniken und Anwendungen
M Ester, J Sander
Springer-Verlag, 2013
3682013
Optics-of: Identifying local outliers
MM Breunig, HP Kriegel, RT Ng, J Sander
Principles of Data Mining and Knowledge Discovery: Third European Conference …, 1999
3081999
Ensembles for unsupervised outlier detection: challenges and research questions a position paper
A Zimek, RJGB Campello, J Sander
Acm Sigkdd Explorations Newsletter 15 (1), 11-22, 2014
3022014
Independent quantization: An index compression technique for high-dimensional data spaces
S Berchtold, C Bohm, HV Jagadish, HP Kriegel, J Sander
Proceedings of 16th International Conference on Data Engineering (Cat. No …, 2000
2862000
Spatial data mining: database primitives, algorithms and efficient DBMS support
M Ester, A Frommelt, HP Kriegel, J Sander
Data Mining and Knowledge Discovery 4, 193-216, 2000
2272000
Segmenting brain tumors with conditional random fields and support vector machines
CH Lee, M Schmidt, A Murtha, A Bistritz, J Sander, R Greiner
Computer Vision for Biomedical Image Applications: First International …, 2005
2152005
Subsampling for efficient and effective unsupervised outlier detection ensembles
A Zimek, M Gaudet, RJGB Campello, J Sander
Proceedings of the 19th ACM SIGKDD international conference on Knowledge …, 2013
1982013
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20