Follow
Song Liu
Song Liu
Senior Lecturer in Statistical Science, University of Bristol, UK
Verified email at bristol.ac.uk - Homepage
Title
Cited by
Cited by
Year
Change-point detection in time-series data by relative density-ratio estimation
S Liu, M Yamada, N Collier, M Sugiyama
Neural Networks 43, 72-83, 2013
5402013
Density-difference estimation
M Sugiyama, T Kanamori, T Suzuki, MC du Plessis, S Liu, I Takeuchi
Neural Computation 25 (10), 2734-2775, 2013
812013
Direct divergence approximation between probability distributions and its applications in machine learning
M Sugiyama, S Liu, MC Du Plessis, M Yamanaka, M Yamada, T Suzuki, ...
Journal of Computing Science and Engineering 7 (2), 99-111, 2013
432013
Statistical outlier detection for diagnosis of cyber attacks in power state estimation
Y Chakhchoukh, S Liu, M Sugiyama, H Ishii
2016 IEEE Power and Energy Society General Meeting (PESGM), 1-5, 2016
412016
Direct learning of sparse changes in Markov networks by density ratio estimation
S Liu, JA Quinn, MU Gutmann, T Suzuki, M Sugiyama
Neural computation 26 (6), 1169-1197, 2014
342014
Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence
YK Noh, M Sugiyama, S Liu, MC Plessis, FC Park, DD Lee
Artificial Intelligence and Statistics, 669-677, 2014
302014
Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence
YK Noh, M Sugiyama, S Liu, MC Plessis, FC Park, DD Lee
Artificial Intelligence and Statistics, 669-677, 2014
302014
Heterogeneous model reuse via optimizing multiparty multiclass margin
XZ Wu, S Liu, ZH Zhou
International Conference on Machine Learning, 6840-6849, 2019
252019
Density-difference estimation
M Sugiyama, T Kanamori, T Suzuki, M Plessis, S Liu, I Takeuchi
Advances in neural information processing systems 25, 2012
202012
Support consistency of direct sparse-change learning in Markov networks
S Liu, T Suzuki, R Relator, J Sese, M Sugiyama, K Fukumizu
The Annals of Statistics 45 (3), 959-990, 2017
192017
Trimmed density ratio estimation
S Liu, A Takeda, T Suzuki, K Fukumizu
Advances in neural information processing systems 30, 2017
172017
Learning Sparse Structural Changes in High-dimensional Markov Networks: A Review on Methodologies and Theories
S Liu, K Fukumizu, T Suzuki
arXiv preprint arXiv:1701.01582, 2017
152017
Learning sparse structural changes in high-dimensional Markov networks
S Liu, K Fukumizu, T Suzuki
Behaviormetrika 44 (1), 265-286, 2017
152017
Sliced Wasserstein variational inference
M Yi, S Liu
arXiv preprint arXiv:2207.13177, 2022
122022
Direct learning of sparse changes in markov networks by density ratio estimation
S Liu, JA Quinn, MU Gutmann, M Sugiyama
Joint European conference on machine learning and knowledge discovery in …, 2013
122013
Fisher efficient inference of intractable models
S Liu, T Kanamori, W Jitkrittum, Y Chen
Advances in Neural Information Processing Systems 32, 2019
112019
Support consistency of direct sparse-change learning in Markov networks
S Liu, T Suzuki, M Sugiyama
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015
92015
Estimating density models with complex truncation boundaries
S Liu, T Kanamori
72019
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
L Sharrock, J Simons, S Liu, M Beaumont
arXiv preprint arXiv:2210.04872, 2022
52022
非定常環境下での学習: 共変量シフト適応, クラスバランス変化適応, 変化検知
杉山将, 山田誠, ドゥ・プレシマーティヌス・クリストフェル
日本統計学会誌 44 (1), 113-136, 2014
52014
The system can't perform the operation now. Try again later.
Articles 1–20