Follow
Jonathan Demaeyer
Jonathan Demaeyer
Royal Meteorological Institute of Belgium
Verified email at meteo.be
Title
Cited by
Cited by
Year
Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World
S Vannitsem, JB Bremnes, J Demaeyer, GR Evans, J Flowerdew, S Hemri, ...
Bulletin of the American Meteorological Society 102 (3), E681-E699, 2021
952021
Low-frequency variability and heat transport in a low-order nonlinear coupled ocean–atmosphere model
S Vannitsem, J Demaeyer, L De Cruz, M Ghil
Physica D: Nonlinear Phenomena 309, 71-85, 2015
382015
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
L De Cruz, S Schubert, J Demaeyer, V Lucarini, S Vannitsem
Nonlinear Processes in Geophysics 25 (2), 387-412, 2018
302018
The modular arbitrary-order ocean-atmosphere model: MAOOAM v1. 0
L De Cruz, J Demaeyer, S Vannitsem
Geoscientific Model Development 9 (8), 2793-2808, 2016
30*2016
Stochastic parametrization of subgrid‐scale processes in coupled ocean–atmosphere systems: benefits and limitations of response theory
J Demaeyer, S Vannitsem
Quarterly Journal of the Royal Meteorological Society 143 (703), 881-896, 2017
272017
Data assimilation for chaotic dynamics
A Carrassi, M Bocquet, J Demaeyer, C Grudzien, P Raanes, S Vannitsem
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol …, 2022
14*2022
Noise-induced escape from bifurcating attractors: Symplectic approach in the weak-noise limit
J Demaeyer, P Gaspard
Physical Review E 80 (3), 031147, 2009
142009
Stochastic Parameterization of Subgrid-Scale Processes: A Review of Recent Physically Based Approaches
J Demaeyer, S Vannitsem
Advances in Nonlinear Geosciences, 55-85, 2018
122018
Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model
J Demaeyer, S Vannitsem
Nonlinear Processes in Geophysics 25 (3), 605-631, 2018
112018
qgs: A flexible Python framework of reduced-order multiscale climate models
J Demaeyer, L De Cruz, S Vannitsem
Journal of Open Source Software 5 (56), 2597, 2020
72020
Correcting for model changes in statistical postprocessing–an approach based on response theory
J Demaeyer, S Vannitsem
Nonlinear Processes in Geophysics 27 (2), 307-327, 2020
62020
A trace formula for activated escape in noisy maps
J Demaeyer, P Gaspard
Journal of Statistical Mechanics: Theory and Experiment 2013 (10), P10026, 2013
62013
Extratropical Low‐Frequency Variability With ENSO Forcing: A Reduced‐Order Coupled Model Study
S Vannitsem, J Demaeyer, M Ghil
Journal of Advances in Modeling Earth Systems 13 (6), e2021MS002530, 2021
52021
Identifying Efficient Ensemble Perturbations for Initializing Subseasonal‐To‐Seasonal Prediction
J Demaeyer, SG Penny, S Vannitsem
Journal of Advances in Modeling Earth Systems 14 (5), e2021MS002828, 2022
22022
The EUPPBench postprocessing benchmark dataset v1. 0
J Demaeyer, S Lerch, C Primo, B Van Schaeybroeck, A Atencia, ...
Earth System Science Data Discussions, 1-25, 2023
2023
Multistability in a Coupled Ocean-Atmosphere Reduced Order Model: Non-linear Temperature Equations
O Hamilton, J Demaeyer, S Vannitsem, M Crucifix
arXiv preprint arXiv:2301.04990, 2023
2023
Statistical post-processing of ensemble forecasts at the Belgian met service
J Demaeyer, S Vannitsem, B Van Schaeybroeck
European Centre For Medium-Range Weather Forecasts, 2022
2022
Extratropical Low-Frequency Variability With ENSO Forcing: A Reduced-Order Coupled Model Investigation
S Vannitsem, J Demaeyer, M Ghil
AGU Fall Meeting Abstracts 2021, A15M-1829, 2021
2021
Correcting for Model Changes in Statistical Postprocessing an Approach Based on Response Theory
S Vannitsem, J Demaeyer
AGU Fall Meeting Abstracts 2021, NG15B-0429, 2021
2021
qgs: A flexible Python framework of reduced-order multiscale climate models
L De Cruz, J Demaeyer, S Vannitsem
EGU General Assembly Conference Abstracts, EGU21-1091, 2021
2021
The system can't perform the operation now. Try again later.
Articles 1–20