Volgen
ML Tlachac
Titel
Geciteerd door
Geciteerd door
Jaar
Audibert: A deep transfer learning multimodal classification framework for depression screening
E Toto, ML Tlachac, EA Rundensteiner
Proceedings of the 30th ACM international conference on information …, 2021
472021
Screening for depression with retrospectively harvested private versus public text
ML Tlachac, E Rundensteiner
IEEE journal of biomedical and health informatics 24 (11), 3326-3332, 2020
452020
Ensembles of bert for depression classification
S Senn, ML Tlachac, R Flores, E Rundensteiner
2022 44th Annual International Conference of the IEEE Engineering in …, 2022
332022
Depression screening from text message reply latency
ML Tlachac, EA Rundensteiner
2020 42nd annual international conference of the IEEE engineering in …, 2020
262020
Audio-based depression screening using sliding window sub-clip pooling
E Toto, ML Tlachac, FL Stevens, EA Rundensteiner
2020 19th IEEE International Conference on Machine Learning and Applications …, 2020
252020
StudentSADD: Rapid mobile depression and suicidal ideation screening of college students during the coronavirus pandemic
ML Tlachac, R Flores, M Reisch, R Kayastha, N Taurich, V Melican, ...
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2022
20*2022
DepreST-CAT: Retrospective smartphone call and text logs collected during the covid-19 pandemic to screen for mental illnesses
ML Tlachac, R Flores, M Reisch, K Houskeeper, EA Rundensteiner
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2022
202022
Emu: Early mental health uncovering framework and dataset
ML Tlachac, E Toto, J Lovering, R Kayastha, N Taurich, E Rundensteiner
2021 20th IEEE International Conference on Machine Learning and Applications …, 2021
202021
You're Making Me Depressed: Leveraging Texts from Contact Subsets to Predict Depression
ML Tlachac, E Toto, E Rundensteiner
2019 IEEE EMBS International Conference on Biomedical Health Informatics …, 2019
172019
Mobile depression screening with time series of text logs and call logs
ML Tlachac, V Melican, M Reisch, E Rundensteiner
2021 IEEE EMBS international conference on biomedical and health informatics …, 2021
152021
Screening for suicidal ideation with text messages
ML Tlachac, K Dixon-Gordon, E Rundensteiner
2021 IEEE EMBS International Conference on Biomedical and Health Informatics …, 2021
152021
Depression screening using deep learning on follow-up questions in clinical interviews
R Flores, ML Tlachac, E Toto, EA Rundensteiner
2021 20th IEEE International Conference on Machine Learning and Applications …, 2021
12*2021
Predicting Future Antibiotic Susceptibility using Regression-based Methods on Longitudinal Massachusetts Antibiogram Data.
ML Tlachac, EA Rundensteiner, K Barton, S Troppy, K Beaulac, S Doron
HEALTHINF, 103-114, 2018
122018
Early mental health uncovering with short scripted and unscripted voice recordings
ML Tlachac, R Flores, E Toto, E Rundensteiner
Deep Learning Applications, Volume 4, 79-110, 2022
112022
Topological data analysis to engineer features from audio signals for depression detection
ML Tlachac, A Sargent, E Toto, R Paffenroth, E Rundensteiner
2020 19th IEEE International Conference on Machine Learning and Applications …, 2020
11*2020
Pattern avoidance in forests of binary shrubs
D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, M Riehl, ML Tlachac
Discrete Mathematics & Theoretical Computer Science 18 (Permutation Patterns), 2016
102016
Transfer learning for depression screening from follow-up clinical interview questions
R Flores, ML Tlachac, E Toto, E Rundensteiner
Deep Learning Applications, Volume 4, 53-78, 2022
92022
Temporal facial features for depression screening
R Flores, ML Tlachac, A Shrestha, E Rundensteiner
Adjunct Proceedings of the 2022 ACM International Joint Conference on …, 2022
92022
Text generation to aid depression detection: a comparative study of conditional sequence generative adversarial networks
ML Tlachac, W Gerych, K Agrawal, B Litterer, N Jurovich, S Thatigotla, ...
2022 IEEE international conference on big data (big data), 2804-2813, 2022
82022
AudiFace: Multimodal Deep Learning for Depression Screening
R Flores, ML Tlachac, E Toto, E Rundensteiner
Machine Learning for Healthcare, 2022
82022
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20