Alexandru Cristian Mara
Cited by
Cited by
Semi-supervised learning in network-structured data via total variation minimization
A Jung, AO Hero III, AC Mara, S Jahromi, A Heimowitz, YC Eldar
IEEE Transactions on Signal Processing 67 (24), 6256-6269, 2019
When is network lasso accurate?
A Jung, N Tran, A Mara
Frontiers in Applied Mathematics and Statistics 3, 28, 2018
Evalne: A framework for evaluating network embeddings on link prediction
A Mara, J Lijffijt, T De Bie
arXiv preprint arXiv:1901.09691, 2019
Benchmarking network embedding models for link prediction: Are we making progress?
AC Mara, J Lijffijt, T De Bie
2020 IEEE 7th International conference on data science and advanced …, 2020
Semi-supervised learning via sparse label propagation
A Jung, AO Hero III, A Mara, S Jahromi
arXiv preprint arXiv:1612.01414, 2016
Csne: Conditional signed network embedding
A Mara, Y Mashayekhi, J Lijffijt, T De Bie
Proceedings of the 29th ACM international conference on information …, 2020
CLUS: parallel subspace clustering algorithm on spark
B Zhu, A Mara, A Mozo
East European Conference on Advances in Databases and Information Systems …, 2015
Network Representation Learning for Link Prediction: Are we improving upon simple heuristics?
AC Mara, J Lijffijt, T De Bie
Scalable semi-supervised learning over networks using nonsmooth convex optimization
A Jung, AO Hero III, A Mara, S Aridhi
arXiv preprint arXiv:1611.00714, 2016
Block-approximated exponential random graphs
F Adriaens, A Mara, J Lijffijt, T De Bie
2020 IEEE 7th International Conference on Data Science and Advanced …, 2020
Recovery conditions and sampling strategies for network lasso
A Mara, A Jung
2017 51st Asilomar Conference on Signals, Systems, and Computers, 405-409, 2017
EvalNE: A framework for network embedding evaluation
A Mara, J Lijffijt, T De Bie
SoftwareX 17, 100997, 2022
Reproducible Evaluations of Network Representation Learning Models Using EvalNE
A Mara, J Lijffijt, T de Bie
An empirical evaluation of network representation learning methods
AC Mara, J Lijffijt, T De Bie
Big Data, 2022
Scalable dyadic independence models with local and global constraints
F Adriaens, A Mara, J Lijffijt, T De Bie
arXiv preprint cs.SI/2002.07076, 2020
A Systematic Evaluation of Node Embedding Robustness
AC Mara, J Lijffijt, S Günnemann, T De Bie
Learning on Graphs Conference, 42: 1-42: 14, 2022
A Comparative Analysis of Graph Signal Recovery Methods for Big Data Networks
A Mara
Accelerating progress in network representation learning: systematic evaluations and new approaches
AC Mara
Ghent University, 2023
Big Data Network Traffic Summary Dataset
E Fernández, A Mara, Á Martínez, A Mozo, B Ordozgoiti, S Vakaruk, B Zhu, ...
ONTIC D1. 1: Deliverable Planning for the Next Period# 1
A Mozo, A Mara, B Zhu, S Gómez, P Owezarski, A Bascuñana, P Sánchez, ...
Universidad politécnica de Madrid; CNRS-LAAS; Ericsson Spain; SATEC …, 2015
The system can't perform the operation now. Try again later.
Articles 1–20