Volgen
Emil Eirola
Emil Eirola
Silo AI
Geverifieerd e-mailadres voor silo.ai
Titel
Geciteerd door
Geciteerd door
Jaar
Regularized extreme learning machine for regression with missing data
Q Yu, Y Miche, E Eirola, M Van Heeswijk, E Séverin, A Lendasse
Neurocomputing 102, 45-51, 2013
1672013
Extreme learning machine for missing data using multiple imputations
D Sovilj, E Eirola, Y Miche, KM Björk, R Nian, A Akusok, A Lendasse
Neurocomputing 174, 220-231, 2016
1382016
Mixture of Gaussians for distance estimation with missing data
E Eirola, A Lendasse, V Vandewalle, C Biernacki
Neurocomputing 131, 32-42, 2014
802014
Distance estimation in numerical data sets with missing values
E Eirola, G Doquire, M Verleysen, A Lendasse
Information Sciences 240, 115-128, 2013
712013
Using the Delta Test for Variable Selection.
E Eirola, E Liitiäinen, A Lendasse, F Corona, M Verleysen
ESANN, 25-30, 2008
652008
Gaussian mixture models for time series modelling, forecasting, and interpolation
E Eirola, A Lendasse
Advances in Intelligent Data Analysis XII: 12th International Symposium, IDA …, 2013
502013
A pragmatic android malware detection procedure
P Palumbo, L Sayfullina, D Komashinskiy, E Eirola, J Karhunen
Computers & Security 70, 689-701, 2017
472017
Efficient detection of zero-day Android Malware using Normalized Bernoulli Naive Bayes
L Sayfullina, E Eirola, D Komashinsky, P Palumbo, Y Miche, A Lendasse, ...
IEEE TrustCom 2015, 2015
382015
Diurnal variations of depression-related health information seeking: case study in Finland using Google Trends data
JC Tana, J Kettunen, E Eirola, H Paakkonen
JMIR mental health 5 (2), e9152, 2018
342018
When is prime-time in streaming media platforms and video-on-demands services? New media consumption patterns and real-time economy
J Tana, E Eirola, M Nylund
European journal of communication 35 (2), 108-125, 2020
312020
Ensembles of local linear models for bankruptcy analysis and prediction
L Kainulainen, Y Miche, E Eirola, Q Yu, B Frénay, E Séverin, A Lendasse
Case Studies In Business, Industry And Government Statistics 4 (2), 116-133, 2011
252011
Extreme learning machine: A robust modeling technique? Yes!
A Lendasse, A Akusok, O Simula, F Corona, M van Heeswijk, E Eirola, ...
Advances in Computational Intelligence: 12th International Work-Conference …, 2013
192013
Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models
E Eirola, A Gritsenko, A Akusok, KM Björk, Y Miche, D Sovilj, R Nian, B He, ...
142015
Ensemble Modeling with a Constrained Linear System of Leave-One-Out Outputs.
Y Miche, E Eirola, P Bas, O Simula, C Jutten, A Lendasse, M Verleysen
ESANN, 28-30, 2010
132010
ELM-SOM: a continuous self-organizing map for visualization
R Hu, V Roshdibenam, HJ Johnson, E Eirola, A Akusok, Y Miche, ...
2018 international joint conference on neural Networks (IJCNN), 1-8, 2018
102018
Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease
A Akusok, E Eirola, KM Björk, Y Miche, H Johnson, A Lendasse
Proceedings of the 10th International Conference on PErvasive Technologies …, 2017
102017
A new application of machine learning in health care
KM Björk, E Eirola, Y Miche, A Lendasse
Proceedings of the 9th ACM International Conference on PErvasive …, 2016
102016
Predicting huntington’s disease: extreme learning machine with missing values
E Eirola, A Akusok, KM Björk, H Johnson, A Lendasse
Proceedings of ELM-2016, 195-206, 2018
92018
Android malware detection: building useful representations
L Sayfullina, E Eirola, D Komashinsky, P Palumbo, J Karhunen
2016 15th IEEE International Conference on Machine Learning and Applications …, 2016
82016
The delta test: The 1-NN estimator as a feature selection criterion
E Eirola, A Lendasse, F Corona, M Verleysen
2014 International Joint Conference on Neural Networks (IJCNN), 4214-4222, 2014
82014
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20