David Madigan
David Madigan
Professor of Statistics, Northeastern University
Geverifieerd e-mailadres voor northeastern.edu - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors
JA Hoeting, D Madigan, AE Raftery, CT Volinsky
Statistical science 14 (4), 382-417, 1999
51391999
Bayesian model averaging for linear regression models
AE Raftery, D Madigan, JA Hoeting
Journal of the American Statistical Association 92 (437), 179-191, 1997
19831997
Model selection and accounting for model uncertainty in graphical models using Occam's window
D Madigan, AE Raftery
Journal of the American Statistical Association 89 (428), 1535-1546, 1994
15831994
Bayesian graphical models for discrete data
D Madigan, J York
International Statistical Review/Revue Internationale de Statistique, 215-232, 1995
13221995
Large-scale Bayesian logistic regression for text categorization
A Genkin, DD Lewis, D Madigan
technometrics 49 (3), 291-304, 2007
8822007
10 challenging problems in data mining research
Q Yang, X Wu
International Journal of Information Technology & Decision Making 5 (04 …, 2006
8412006
Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
G Hripcsak, JD Duke, NH Shah, CG Reich, V Huser, MJ Schuemie, ...
Studies in health technology and informatics 216, 574, 2015
5932015
Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model
B Letham, C Rudin, TH McCormick, D Madigan
The Annals of Applied Statistics 9 (3), 1350-1371, 2015
5532015
A characterization of Markov equivalence classes for acyclic digraphs
SA Andersson, D Madigan, MD Perlman
The Annals of Statistics 25 (2), 505-541, 1997
5251997
Bayesian indoor positioning systems
D Madigan, E Einahrawy, RP Martin, WH Ju, P Krishnan, ...
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and …, 2005
5102005
Statistical themes and lessons for data mining
C Glymour, D Madigan, D Pregibon, P Smyth
Data mining and knowledge discovery 1 (1), 11-28, 1997
3601997
Novel data‐mining methodologies for adverse drug event discovery and analysis
R Harpaz, W DuMouchel, NH Shah, D Madigan, P Ryan, C Friedman
Clinical Pharmacology & Therapeutics 91 (6), 1010-1021, 2012
3412012
Bayesian model averaging in proportional hazard models: assessing the risk of a stroke
CT Volinsky, D Madigan, AE Raftery, RA Kronmal
Journal of the Royal Statistical Society: Series C (Applied Statistics) 46 …, 1997
3001997
Experiments with random projections for machine learning
D Fradkin, D Madigan
Proceedings of the ninth ACM SIGKDD international conference on Knowledge …, 2003
2892003
Good practices for real‐world data studies of treatment and/or comparative effectiveness: recommendations from the joint ISPOR‐ISPE Special Task Force on real‐world evidence in …
ML Berger, H Sox, RJ Willke, DL Brixner, HG Eichler, W Goettsch, ...
Value in Health 20 (8), 1003-1008, 2017
2812017
The role of data mining in pharmacovigilance
M Hauben, D Madigan, CM Gerrits, L Walsh, EP Van Puijenbroek
Expert opinion on drug safety 4 (5), 929-948, 2005
2752005
Statistical inference and data mining
C Glymour, D Madigan, D Pregibon, P Smyth
Communications of the ACM 39 (11), 35-41, 1996
2291996
On the naive bayes model for text categorization
S Eyheramendy, DD Lewis, D Madigan
International workshop on artificial intelligence and statistics, 93-100, 2003
2282003
Alternative Markov properties for chain graphs
SA Andersson, D Madigan, MD Perlman
Scandinavian journal of statistics 28 (1), 33-85, 2001
2272001
Characterizing treatment pathways at scale using the OHDSI network
G Hripcsak, PB Ryan, JD Duke, NH Shah, RW Park, V Huser, MA Suchard, ...
Proceedings of the National Academy of Sciences 113 (27), 7329-7336, 2016
2262016
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20