Hugo Duminil-copin
Hugo Duminil-copin
Professeur de mathématiques, Université de Genève
Verified email at - Homepage
Cited by
Cited by
The connective constant of the honeycomb lattice equals √ 2+√ 2
H Duminil-Copin, S Smirnov
Ann. of Math. (2) 175 (3), 1653-1665, 2012
The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1
V Beffara, H Duminil-Copin
Probability Theory and Related Fields 153 (3-4), 511-542, 2012
The sharp threshold for bootstrap percolation in all dimensions
J Balogh, B Bollobás, H Duminil-Copin, R Morris
Transactions of the American Mathematical Society 364 (5), 2667-2701, 2012
Convergence of Ising interfaces to Schrammʼs SLE curves
D Chelkak, H Duminil-Copin, C Hongler, A Kemppainen, S Smirnov
Comptes Rendus Mathematique 352 (2), 157-161, 2014
A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model
H Duminil-Copin, V Tassion
Communications in Mathematical Physics 343, 725-745, 2016
Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with
H Duminil-Copin, V Sidoravicius, V Tassion
Communications in Mathematical Physics 349 (1), 47-107, 2017
Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model
H Duminil‐Copin, C Hongler, P Nolin
Communications on pure and applied mathematics 64 (9), 1165-1198, 2011
Sharp phase transition for the random-cluster and Potts models via decision trees
H Duminil-Copin, A Raoufi, V Tassion
Annals of Mathematics 189 (1), 75-99, 2019
Lectures on self-avoiding walks
R Bauerschmidt, H Duminil-Copin, J Goodman, G Slade
Probability and Statistical Physics in Two and More Dimensions (D. Ellwood …, 2012
Conformal invariance of lattice models
H Duminil-Copin, S Smirnov
Probability and statistical physics in two and more dimensions 15, 213-276, 2012
Random currents and continuity of Ising model’s spontaneous magnetization
M Aizenman, H Duminil-Copin, V Sidoravicius
Communications in Mathematical Physics 334 (2), 719-742, 2015
Discontinuity of the phase transition for the planar random-cluster and Potts models with
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
arXiv preprint arXiv:1611.09877, 2016
Disorder, entropy and harmonic functions
I Benjamini, H Duminil-Copin, G Kozma, A Yadin
Annals of Probability 43 (5), 2332-2373, 2015
Crossing probabilities in topological rectangles for the critical planar FK-Ising model
D Chelkak, H Duminil-Copin, C Hongler
Electronic Journal of Probability 21, 2016
Parafermionic observables and their applications to planar statistical physics models
H Duminil-Copin
Ensaios matemáticos 25, 1-371, 2013
Lectures on the Ising and Potts models on the hypercubic lattice
H Duminil-Copin
PIMS-CRM Summer School in Probability, 35-161, 2017
The Critical Fugacity for Surface Adsorption of Self-Avoiding Walks on the Honeycomb Lattice is {1+\ sqrt {2}}
NR Beaton, M Bousquet-Mélou, J de Gier, H Duminil-Copin, AJ Guttmann
Communications in Mathematical Physics, 1-28, 0
The critical temperature for the Ising model on planar doubly periodic graphs
D Cimasoni, H Duminil-Copin
Electronic Journal in Probability 18 (44), 1-18, 2013
A new proof of the sharpness of the phase transition for Bernoulli percolation on
H Duminil-Copin, V Tassion
L’Enseignement mathématique 62 (1), 199-206, 2017
Universality of two-dimensional critical cellular automata
B Bollobás, H Duminil-Copin, R Morris, P Smith
arXiv preprint arXiv:1406.6680, 2014
The system can't perform the operation now. Try again later.
Articles 1–20