Frank Hutter
Frank Hutter
Professor of Computer Science, University of Freiburg, Germany
Adresse e-mail validée de cs.uni-freiburg.de - Page d'accueil
Titre
Citée par
Citée par
Année
Sequential model-based optimization for general algorithm configuration
F Hutter, HH Hoos, K Leyton-Brown
International conference on learning and intelligent optimization, 507-523, 2011
17722011
Sgdr: Stochastic gradient descent with warm restarts
I Loshchilov, F Hutter
arXiv preprint arXiv:1608.03983, 2016
15212016
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
C Thornton, F Hutter, HH Hoos, K Leyton-Brown
Proceedings of the 19th ACM SIGKDD international conference on Knowledge …, 2013
11562013
Decoupled weight decay regularization
I Loshchilov, F Hutter
arXiv preprint arXiv:1711.05101, 2017
1155*2017
Auto-sklearn: efficient and robust automated machine learning
M Feurer, A Klein, K Eggensperger, JT Springenberg, M Blum, F Hutter
Automated Machine Learning, 113-134, 2019
11412019
ParamILS: an automatic algorithm configuration framework
F Hutter, HH Hoos, K Leyton-Brown, T Stützle
Journal of Artificial Intelligence Research 36, 267-306, 2009
9132009
SATzilla: portfolio-based algorithm selection for SAT
L Xu, F Hutter, HH Hoos, K Leyton-Brown
Journal of artificial intelligence research 32, 565-606, 2008
8522008
Deep learning with convolutional neural networks for EEG decoding and visualization
RT Schirrmeister, JT Springenberg, LDJ Fiederer, M Glasstetter, ...
Human brain mapping 38 (11), 5391-5420, 2017
8222017
Neural architecture search: A survey.
T Elsken, JH Metzen, F Hutter
J. Mach. Learn. Res. 20 (55), 1-21, 2019
8152019
Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA
L Kotthoff, C Thornton, HH Hoos, F Hutter, K Leyton-Brown
Automated Machine Learning, 81-95, 2019
4632019
Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA
L Kotthoff, C Thornton, HH Hoos, F Hutter, K Leyton-Brown
Automated Machine Learning, 81-95, 2019
4632019
Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA
L Kotthoff, C Thornton, HH Hoos, F Hutter, K Leyton-Brown
Journal of Machine Learning Research 18 (25), 1-5, 2017
4602017
Automated machine learning: methods, systems, challenges
F Hutter, L Kotthoff, J Vanschoren
Springer Nature, 2019
4152019
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
T Domhan, JT Springenberg, F Hutter
Twenty-fourth international joint conference on artificial intelligence, 2015
3942015
Algorithm runtime prediction: Methods & evaluation
F Hutter, L Xu, HH Hoos, K Leyton-Brown
Artificial Intelligence 206, 79-111, 2014
3792014
Automatic algorithm configuration based on local search
F Hutter, HH Hoos, T Stützle
Aaai 7, 1152-1157, 2007
3312007
Initializing Bayesian Hyperparameter Optimization via Meta-Learning.
M Feurer, JT Springenberg, F Hutter
AAAI, 1128-1135, 2015
319*2015
BOHB: Robust and efficient hyperparameter optimization at scale
S Falkner, A Klein, F Hutter
International Conference on Machine Learning, 1437-1446, 2018
3122018
Fast bayesian optimization of machine learning hyperparameters on large datasets
A Klein, S Falkner, S Bartels, P Hennig, F Hutter
Artificial Intelligence and Statistics, 528-536, 2017
3012017
Scaling and probabilistic smoothing: Efficient dynamic local search for SAT
F Hutter, D Tompkins, H Hoos
Principles and Practice of Constraint Programming-CP 2002, 241-249, 2002
2672002
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20