Follow
Dogan Corus
Title
Cited by
Cited by
Year
Level-based analysis of genetic algorithms and other search processes
D Corus, DC Dang, AV Eremeev, PK Lehre
IEEE Transactions on Evolutionary Computation 22 (5), 707-719, 2017
1102017
Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms
D Corus, PS Oliveto
IEEE Transactions on Evolutionary Computation 22 (5), 720-732, 2017
1022017
Level-based analysis of genetic algorithms and other search processes
D Corus, DC Dang, AV Eremeev, PK Lehre
Parallel Problem Solving from Nature–PPSN XIII: 13th International …, 2014
452014
Fast artificial immune systems
D Corus, PS Oliveto, D Yazdani
Parallel Problem Solving from Nature–PPSN XV: 15th International Conference …, 2018
362018
On the benefits of populations for the exploitation speed of standard steady-state genetic algorithms
D Corus, PS Oliveto
Proceedings of the Genetic and Evolutionary Computation Conference, 1452-1460, 2019
322019
On the runtime analysis of the Opt-IA artificial immune system
D Corus, PS Oliveto, D Yazdani
Proceedings of the Genetic and Evolutionary Computation Conference, 83-90, 2017
302017
Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem
D Corus, PS Oliveto, D Yazdani
Artificial Intelligence 274, 180-196, 2019
292019
Toward a unifying framework for evolutionary processes
T Paixão, G Badkobeh, N Barton, D Çörüş, DC Dang, T Friedrich, ...
Journal of Theoretical Biology 383, 28-43, 2015
292015
When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms
D Corus, PS Oliveto, D Yazdani
Theoretical Computer Science 832, 166-185, 2020
272020
On easiest functions for mutation operators in bio-inspired optimisation
D Corus, J He, T Jansen, PS Oliveto, D Sudholt, C Zarges
Algorithmica 78, 714-740, 2017
192017
A parameterised complexity analysis of bi-level optimisation with evolutionary algorithms
D Corus, PK Lehre, F Neumann, M Pourhassan
Evolutionary computation 24 (1), 183-203, 2016
172016
Artificial immune systems can find arbitrarily good approximations for the NP-hard partition problem
D Corus, PS Oliveto, D Yazdani
Parallel Problem Solving from Nature–PPSN XV: 15th International Conference …, 2018
132018
On steady-state evolutionary algorithms and selective pressure: Why inverse rank-based allocation of reproductive trials is best
D Corus, A Lissovoi, PS Oliveto, C Witt
ACM Transactions on Evolutionary Learning and Optimization 1 (1), 1-38, 2021
112021
On easiest functions for somatic contiguous hypermutations and standard bit mutations
D Corus, J He, T Jansen, PS Oliveto, D Sudholt, C Zarges
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary …, 2015
112015
Fast immune system-inspired hypermutation operators for combinatorial optimization
D Corus, PS Oliveto, D Yazdani
IEEE Transactions on Evolutionary Computation 25 (5), 956-970, 2021
102021
The generalized minimum spanning tree problem: a parameterized complexity analysis of bi-level optimisation
D Corus, PK Lehre, F Neumann
Proceedings of the 15th annual conference on Genetic and evolutionary …, 2013
102013
Automatic adaptation of hypermutation rates for multimodal optimisation
D Corus, PS Oliveto, D Yazdani
Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic …, 2021
92021
On inversely proportional hypermutations with mutation potential
D Corus, PS Oliveto, D Yazdani
Proceedings of the Genetic and Evolutionary Computation Conference, 215-223, 2019
82019
Theory Driven Design of Efficient Genetic Algorithms for a Classical Graph Problem
D Corus, PK Lehre
Recent Developments in Metaheuristics, 125-140, 2018
32018
Standard steady state genetic algorithms can hillclimb faster than evolutionary algorithms using standard bit mutation
D Corus, PS Oliveto
Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2018
12018
The system can't perform the operation now. Try again later.
Articles 1–20