Suivre
Mohammed El Adoui
Mohammed El Adoui
Postdoc associate / Sr. ML Engineer /Faculty of Computer Science/ University of Namur/ Belgium
Adresse e-mail validée de unamur.be - Page d'accueil
Titre
Citée par
Citée par
Année
MRI breast tumor segmentation using different encoder and decoder CNN architectures
M El Adoui, SA Mahmoudi, MA Larhmam, M Benjelloun
Computers 8 (3), 52, 2019
1002019
Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images
M El Adoui, S Drisis, M Benjelloun
International journal of computer assisted radiology and surgery 15, 1491-1500, 2020
642020
Automated breast tumor segmentation in DCE-MRI using deep learning
M Benjelloun, M El Adoui, MA Larhmam, SA Mahmoudi
2018 4th International Conference on Cloud Computing Technologies and …, 2018
522018
Internet of things: learning and practices. application to smart city
O Debauche, S Mahmoudi, SA Mahmoudi
2018 4th International Conference on Cloud Computing Technologies and …, 2018
302018
A PRM approach for early prediction of breast cancer response to chemotherapy based on registered MR images
M El Adoui, S Drisis, M Benjelloun
International journal of computer assisted radiology and surgery 13, 1233-1243, 2018
242018
Deep learning-based prediction of response to HER2-targeted neoadjuvant chemotherapy from pre-treatment dynamic breast MRI: a multi-institutional validation study
N Braman, ME Adoui, M Vulchi, P Turk, M Etesami, P Fu, K Bera, S Drisis, ...
arXiv preprint arXiv:2001.08570, 2020
212020
Towards breast cancer response prediction using artificial intelligence and radiomics
Y Amkrane, M El Adoui, M Benjelloun
2020 5th International Conference on Cloud Computing and Artificial …, 2020
202020
Breast Cancer Heterogeneity Analysis as Index of Response to Treatment Using MRI Images: A Review
M El Adoui, S Drisis, MA Larhmam, M Lemort, M Benjelloun
Imaging in Medicine 9 (4), 109-119, 2017
202017
Deep learning approach predicting breast tumor response to neoadjuvant treatment using DCE-MRI volumes acquired before and after chemotherapy
M El Adoui, MA Larhmam, S Drisis, M Benjelloun
Medical Imaging 2019: Computer-Aided Diagnosis 10950, 649-658, 2019
192019
Predict breast tumor response to chemotherapy using a 3D deep learning architecture applied to DCE-MRI data
M El Adoui, S Drisis, M Benjelloun
Bioinformatics and Biomedical Engineering: 7th International Work-Conference …, 2019
162019
Cloud-based platform for computer vision applications
SA Mahmoudi, M El ADOUI, MA Belarbi, MA Larhmam, F Lecron
ICSDE '17 Proceedings of the 2017 International Conference on Smart Digital …, 2017
112017
Analyzing breast tumor heterogeneity to predict the response to chemotherapy using 3D MR images registration
M EL ADOUI, S Drisis, M Benjelloun
ICSDE '17: Proceedings of the 2017 International Conference on Smart Digital …, 2017
112017
Early prediction of neoadjuvant treatment outcome in locally advanced breast cancer using parametric response mapping and radial heterogeneity from breast MRI.
S Drisis, M El Adoui
11*
Development and external validation of a deep learning model for predicting response to HER2-targeted neoadjuvant therapy from pretreatment breast MRI.
M Vulchi, M El Adoui, N Braman, P Turk, M Etesami, S Drisis, D Plecha, ...
Journal of Clinical Oncology 37 (15_suppl), 593-593, 2019
92019
Real time web-based toolbox for computer vision
SA Mahmoudi, MA Belarbi, M El Adoui, MA Larhmam, F Lecron
Journal of Science and Technology of the Arts 10 (2), 3-13, 2018
62018
Composite score for anomaly detection in imbalanced real-world industrial dataset
A Bougaham, M El Adoui, I Linden, B Frénay
Machine Learning 113 (7), 4381-4406, 2024
32024
New explainable deep CNN design for classifying breast tumor response over neoadjuvant chemotherapy
ME Adoui, S Drisis, M Benjelloun
Current Medical Imaging 19 (5), 526-533, 2023
32023
Industrial and Medical Anomaly Detection Through Cycle-Consistent Adversarial Networks
A Bougaham, V Delchevalerie, ME Adoui, B Frénay
arXiv preprint arXiv:2302.05154, 2023
22023
Prospective evaluation by Parametric Response Mapping (PRM) applied in MRI volumetric images of breast cancer
M EL ADOUI, S Drisis, M Benjelloun
1*2016
Constrained Tiny Machine Learning for Predicting Gas Concentration with I4. 0 Low-cost Sensors
M El Adoui, T Herpoel, B Frénay
ACM Transactions on Embedded Computing Systems 23 (3), 1-23, 2024
2024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20