Suivre
Ruchika Malhotra
Titre
Citée par
Citée par
Année
A systematic review of machine learning techniques for software fault prediction
R Malhotra
Applied Soft Computing 27, 504-518, 2015
6972015
Empirical Study of Object-Oriented Metrics.
KK Aggarwal, Y Singh, A Kaur, R Malhotra
J. Object Technol. 5 (8), 149-173, 2006
291*2006
Empirical validation of object-oriented metrics for predicting fault proneness models
Y Singh, A Kaur, R Malhotra
Software quality journal 18, 3-35, 2010
2552010
Empirical analysis for investigating the effect of object‐oriented metrics on fault proneness: a replicated case study
KK Aggarwal, Y Singh, A Kaur, R Malhotra
Software process: Improvement and practice 14 (1), 39-62, 2009
1802009
Fault prediction using statistical and machine learning methods for improving software quality
R Malhotra, A Jain
Journal of Information Processing Systems 8 (2), 241-262, 2012
1752012
An empirical study to investigate oversampling methods for improving software defect prediction using imbalanced data
R Malhotra, S Kamal
Neurocomputing 343, 120-140, 2019
1552019
Empirical research in software engineering: concepts, analysis, and applications
R Malhotra
CRC press, 2016
1522016
Comparative analysis of statistical and machine learning methods for predicting faulty modules
R Malhotra
Applied Soft Computing 21, 286-297, 2014
1212014
Techniques for text classification: Literature review and current trends.
R Jindal, R Malhotra, A Jain
webology 12 (2), 2015
1092015
Application of random forest in predicting fault-prone classes
A Kaur, R Malhotra
2008 international conference on advanced computer theory and engineering, 37-43, 2008
1042008
Software reuse metrics for object-oriented systems
KK Aggarwal, Y Singh, A Kaur, R Malhotra
Third ACIS Int'l Conference on Software Engineering Research, Management and …, 2005
832005
Soft computing approaches for prediction of software maintenance effort
A Kaur, K Kaur, R Malhotra
International Journal of Computer Applications 1 (16), 69-75, 2010
822010
Investigation of relationship between object-oriented metrics and change proneness
R Malhotra, M Khanna
International Journal of Machine Learning and Cybernetics 4, 273-286, 2013
802013
Software maintainability: Systematic literature review and current trends
R Malhotra, A Chug
International Journal of Software Engineering and Knowledge Engineering 26 …, 2016
782016
Comparative analysis of regression and machine learning methods for predicting fault proneness models
Y Singh, A Kaur, R Malhotra
International journal of computer applications in technology 35 (2-4), 183-193, 2009
782009
Software maintainability prediction using machine learning algorithms
R Malhotra¹, A Chug
Software engineering: an international Journal (SeiJ) 2 (2), 2012
772012
An empirical framework for defect prediction using machine learning techniques with Android software
R Malhotra
Applied Soft Computing 49, 1034-1050, 2016
762016
An empirical study for software change prediction using imbalanced data
R Malhotra, M Khanna
Empirical Software Engineering 22, 2806-2851, 2017
732017
Software effort prediction using statistical and machine learning methods
R Malhotra, A Jain
International Journal of Advanced Computer Science and Applications 2 (1), 2011
692011
Software fault proneness prediction using support vector machines
Y Singh, A Kaur, R Malhotra
Proceedings of the world congress on engineering 1, 1-3, 2009
682009
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20