David Martens
David Martens
Verified email at uantwerp.be - Homepage
Title
Cited by
Cited by
Year
Classification with ant colony optimization
D Martens, M De Backer, R Haesen, J Vanthienen, M Snoeck, B Baesens
IEEE Transactions on Evolutionary Computation 11 (5), 651-665, 2007
4542007
Comprehensible credit scoring models using rule extraction from support vector machines
D Martens, B Baesens, T Van Gestel, J Vanthienen
European journal of operational research 183 (3), 1466-1476, 2007
4252007
New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
W Verbeke, K Dejaeger, D Martens, J Hur, B Baesens
European Journal of Operational Research 218 (1), 211-229, 2012
3002012
Building comprehensible customer churn prediction models with advanced rule induction techniques
W Verbeke, D Martens, C Mues, B Baesens
Expert systems with applications 38 (3), 2354-2364, 2011
2762011
Editorial survey: swarm intelligence for data mining
D Martens, B Baesens, T Fawcett
Machine Learning 82 (1), 1-42, 2011
2382011
Data mining techniques for software effort estimation: a comparative study
K Dejaeger, W Verbeke, D Martens, B Baesens
IEEE transactions on software engineering 38 (2), 375-397, 2011
2082011
Robust process discovery with artificial negative events
S Goedertier, D Martens, J Vanthienen, B Baesens
Journal of Machine Learning Research 10 (Jun), 1305-1340, 2009
1752009
Decompositional rule extraction from support vector machines by active learning
D Martens, BB Baesens, T Van Gestel
IEEE Transactions on Knowledge and Data Engineering 21 (2), 178-191, 2008
1542008
Mining software repositories for comprehensible software fault prediction models
O Vandecruys, D Martens, B Baesens, C Mues, M De Backer, R Haesen
Journal of Systems and software 81 (5), 823-839, 2008
1342008
Predictive Modeling With Big Data: Is Bigger Really Better?
E Junqué de Fortuny, D Martens, F Provost
Big Data 1 (4), 215-226, 2013
1322013
Benchmarking regression algorithms for loss given default modeling
G Loterman, I Brown, D Martens, C Mues, B Baesens
International Journal of Forecasting 28 (1), 161-170, 2012
1282012
Predicting going concern opinion with data mining
D Martens, L Bruynseels, B Baesens, M Willekens, J Vanthienen
Decision Support Systems 45 (4), 765-777, 2008
1192008
Explaining data-driven document classifications
D Martens, F Provost
MIS Quarterly 38 (1), 73-100, 2014
1142014
Social network analysis for customer churn prediction
W Verbeke, D Martens, B Baesens
Applied Soft Computing 14, 431-446, 2014
1092014
Rule extraction from support vector machines: an overview of issues and application in credit scoring
D Martens, J Huysmans, R Setiono, J Vanthienen, B Baesens
Rule extraction from support vector machines, 33-63, 2008
932008
Performance of classification models from a user perspective
D Martens, J Vanthienen, W Verbeke, B Baesens
Decision Support Systems 51 (4), 782-793, 2011
892011
Process discovery in event logs: An application in the telecom industry
S Goedertier, J De Weerdt, D Martens, J Vanthienen, B Baesens
Applied Soft Computing 11 (2), 1697-1710, 2011
842011
Mining Massive Fine-Grained Behavior Data to Improve Predictive Analytics
D Martens, EJ de Fortuny, J Clark, F Provost
MIS Quarterly 40 (4), 2016
802016
50 years of data mining and OR: upcoming trends and challenges
B Baesens, C Mues, D Martens, J Vanthienen
Journal of the Operational Research Society 60 (sup1), S16-S23, 2009
742009
Comprehensible software fault and effort prediction: A data mining approach
J Moeyersoms, EJ de Fortuny, K Dejaeger, B Baesens, D Martens
Journal of Systems and Software 100, 80-90, 2015
632015
The system can't perform the operation now. Try again later.
Articles 1–20