Suivre
Minje Kim
Minje Kim
Associate Professor at Indiana University Bloomington
Adresse e-mail validée de indiana.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Joint optimization of masks and deep recurrent neural networks for monaural source separation
PS Huang, M Kim, M Hasegawa-Johnson, P Smaragdis
IEEE/ACM Transactions on Audio, Speech, and Language Processing 23 (12 …, 2015
4842015
Deep learning for monaural speech separation
PS Huang, M Kim, M Hasegawa-Johnson, P Smaragdis
IEEE International Conference on Acoustics, Speech, and Signal Processing …, 2014
4682014
Bitwise Neural Networks
M Kim, P Smaragdis
International Conference on Machine Learning (ICML) Workshop on Resource …, 2015
2772015
SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS
PS Huang, M Kim, M Hasegawa-Johnson, P Smaragdis
International Society for Music Information Retrieval Conference, 2014
1612014
Experiments on Deep Learning for Speech Denoising
D Liu, P Smaragdis, M Kim
Annual Conference of the International Speech Communication Association …, 2014
1242014
DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car
MG Bechtel, E McEllhiney, M Kim, H Yun
IEEE International Conference on Embedded and Real-Time Computing Systems …, 2018
1102018
Nonnegative matrix partial co-factorization for drum source separation
J Yoo, M Kim, K Kang, S Choi
2010 IEEE International Conference on Acoustics, Speech and Signal …, 2010
742010
XNOR-pop: A processing-in-memory architecture for binary convolutional neural networks in wide-io2 drams
L Jiang, M Kim, W Wen, D Wang
2017 IEEE/ACM International Symposium on Low Power Electronics and Design …, 2017
642017
AutoQ: Automated Kernel-Wise Neural Network Quantization
Q Lou, F Guo, L Liu, M Kim, L Jiang
International Conference on Learning Representations, 2019
62*2019
Nonnegative Matrix Partial Co-Factorization for Spectral and Temporal Drum Source Separation
M Kim, J Yoo, K Kang, S Choi
Selected Topics in Signal Processing, IEEE Journal of 5 (6), 1192-1204, 2011
612011
Mixtures of Local Dictionaries for Unsupervised Speech Enhancement
M Kim, P Smaragdis
IEEE Signal Processing Letters 22 (3), 288 - 292, 2015
472015
Learning everywhere: Pervasive machine learning for effective high-performance computation
G Fox, JA Glazier, JCS Kadupitiya, V Jadhao, M Kim, J Qiu, JP Sluka, ...
2019 IEEE International Parallel and Distributed Processing Symposium …, 2019
452019
Adaptive Denoising Autoencoders: A Fine-tuning Scheme to Learn from Test Mixtures
M Kim, P Smaragdis
International Conference on Latent Variable Analysis and Signal Separation, 2015
392015
Monaural music source separation: Nonnegativity, sparseness, and shift-invariance
M Kim, S Choi
Independent Component Analysis and Blind Signal Separation: 6th …, 2006
382006
Cascaded Cross-Module Residual Learning towards Lightweight End-to-End Speech Coding
K Zhen, J Sung, MS Lee, S Beack, M Kim
Interspeech 2019, 2019
282019
LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device
SK Beack, TJ Lee, MJ Kim, K Kang, DY Jang, JW Hong, SEO Jeongil, ...
US Patent 8,898,059, 2014
282014
Apparatus for encoding and decoding of integrated speech and audio
TJ Lee, SK Baek, MJ Kim, DY Jang, SEO Jeongil, K Kang, JW Hong, ...
US Patent 8,903,720, 2014
272014
Single Channel Source Separation Using Smooth Nonnegative Matrix Factorization with Markov Random Fields
M Kim, P Smaragdis
IEEE International Workshop on Machine Learning for Signal Processing, 2013
272013
Integrated voice/audio encoding/decoding device and method whereby the overlap region of a window is adjusted based on the transition interval
MJ Kim, SK Beack, TJ Lee, KO Kang, SEO Jeongil, JW Kim, JW Hong, ...
US Patent App. 13/502,025, 2012
272012
COLLABORATIVE DEEP LEARNING FOR SPEECH ENHANCEMENT: A RUN-TIME MODEL SELECTION METHOD USING AUTOENCODERS
M Kim
IEEE International Conference on Acoustics, Speech and Signal Processing …, 2017
242017
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20