Deep mixture point processes: Spatio-temporal event prediction with rich contextual information M Okawa, T Iwata, T Kurashima, Y Tanaka, H Toda, N Ueda Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019 | 48 | 2019 |
Spatially aggregated Gaussian processes with multivariate areal outputs Y Tanaka, T Tanaka, T Iwata, T Kurashima, M Okawa, Y Akagi, H Toda Advances in Neural Information Processing Systems 32, 2019 | 28 | 2019 |
Refining coarse-grained spatial data using auxiliary spatial data sets with various granularities Y Tanaka, T Iwata, T Tanaka, T Kurashima, M Okawa, H Toda Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 5091-5099, 2019 | 16 | 2019 |
Real-time and proactive navigation via spatio-temporal prediction N Ueda, F Naya, H Shimizu, T Iwata, M Okawa, H Sawada Adjunct Proceedings of the 2015 ACM International Joint Conference on …, 2015 | 16 | 2015 |
Predicting traffic accidents with event recorder data Y Takimoto, Y Tanaka, T Kurashima, S Yamamoto, M Okawa, H Toda Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Prediction …, 2019 | 15 | 2019 |
Online traffic flow prediction using convolved bilinear Poisson regression M Okawa, H Kim, H Toda 2017 18th IEEE International Conference on Mobile Data Management (MDM), 134-143, 2017 | 15 | 2017 |
Dynamic Hawkes Processes for Discovering Time-evolving Communities' States behind Diffusion Processes M Okawa, T Iwata, Y Tanaka, H Toda, T Kurashima, H Kashima Proceedings of the 27th ACM SIGKDD International Conference on Knowledge …, 2021 | 8 | 2021 |
Predicting Opinion Dynamics via Sociologically-Informed Neural Networks M Okawa, T Iwata Proceedings of the 28th ACM SIGKDD International Conference on Knowledge …, 2022 | 7 | 2022 |
Context-aware spatio-temporal event prediction via convolutional Hawkes processes M Okawa, T Iwata, Y Tanaka, H Toda, T Kurashima, H Kashima Machine Learning Journal (ECML-PKDD Journal Track), 2022 | 4 | 2022 |
Compositional Abilities Emerge Multiplicatively: Exploring Diffusion Models on a Synthetic Task M Okawa, ES Lubana, R Dick, H Tanaka Advances in Neural Information Processing Systems (NeurIPS) 36, 2023 | 2 | 2023 |
Deep Mixture Point Processes M Okawa, T Iwata, T Kurashima, Y Tanaka, H Toda, N Ueda, H Kashima Transactions of the Japanese Society for Artificial Intelligence 36 (5), C-L37, 2021 | 2 | 2021 |
Spatio-temporal event data estimating device, method, and program M Okawa, H Toda US Patent App. 17/058,613, 2021 | 1 | 2021 |
Marked Temporal Point Processes for Trip Demand Prediction in Bike Sharing Systems M Okawa, Y Tanaka, T Kurashima, H Toda, T Yamada IEICE TRANSACTIONS on Information and Systems 102 (9), 1635-1643, 2019 | 1 | 2019 |
Deep Mixture Point Processes M Okawa, T Iwata, T Kurashima, Y Tanaka, H Toda, N Ueda Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019 | 1 | 2019 |
Learning method, learning apparatus and program M Okawa, H Toda US Patent App. 18/007,696, 2023 | | 2023 |
Learning device, prediction device, learning method, prediction method, and program M Okawa, T Iwata, H Toda, T Kurashima, Y Tanaka US Patent App. 17/624,564, 2022 | | 2022 |
Error detection device, error detection method, and error detection program M Okawa, H Toda US Patent App. 17/617,994, 2022 | | 2022 |
Event occurrence time learning device, event occurrence time estimation device, event occurrence time learning method, event occurrence time estimation method, event occurrence … Y Takimoto, Y Tanaka, T Kurashima, S Yamamoto, M Okawa, H Toda US Patent App. 17/613,062, 2022 | | 2022 |
Aggregated Multi-output Gaussian Processes with Knowledge Transfer Across Domains Y Tanaka, T Tanaka, T Iwata, T Kurashima, M Okawa, Y Akagi, H Toda arXiv preprint arXiv:2206.12141, 2022 | | 2022 |
Event occurrence time learning device, event occurrence time estimation device, event occurrence time estimation method, event occurrence time learning program, and event … Y Takimoto, Y Tanaka, T Kurashima, S Yamamoto, M Okawa, H Toda US Patent App. 17/431,774, 2022 | | 2022 |