Follow
James Jordon
James Jordon
Research Assistant, The Alan Turing Institute
Verified email at turing.ac.uk
Title
Cited by
Cited by
Year
Gain: Missing data imputation using generative adversarial nets
J Yoon, J Jordon, M Schaar
International Conference on Machine Learning, 5689-5698, 2018
11162018
PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees
J Jordon, J Yoon, M van der Schaar
6562018
GANITE: Estimation of individualized treatment effects using generative adversarial nets
J Yoon, J Jordon, M Van Der Schaar
International Conference on Learning Representations, 2018
4112018
VIME: Extending the Success of Self-and Semi-supervised Learning to Tabular Domain
J Yoon, Y Zhang, J Jordon, M van der Schaar
Advances in Neural Information Processing Systems 33, 2020
1942020
INVASE: Instance-wise Variable Selection using Neural Networks
J Yoon, J Jordon, M van der Schaar
1792018
Estimating counterfactual treatment outcomes over time through adversarially balanced representations
I Bica, AM Alaa, J Jordon, M van der Schaar
arXiv preprint arXiv:2002.04083, 2020
1522020
Synthetic Data--what, why and how?
J Jordon, L Szpruch, F Houssiau, M Bottarelli, G Cherubin, C Maple, ...
arXiv preprint arXiv:2205.03257, 2022
1042022
Lifelong Bayesian Optimization
Y Zhang, J Jordon, AM Alaa, M van der Schaar
arXiv preprint arXiv:1905.12280, 2019
104*2019
Estimating the effects of continuous-valued interventions using generative adversarial networks
I Bica, J Jordon, M van der Schaar
Advances in Neural Information Processing Systems 33, 16434-16445, 2020
892020
KnockoffGAN: Generating Knockoffs for Feature Selection using Generative Adversarial Networks
J Jordon, J Yoon, M van der Schaar
812018
Deep-Treat: Learning Optimal Personalized Treatments From Observational Data Using Neural Networks.
O Atan, J Jordon, M van der Schaar
AAAI, 2018
732018
RadialGAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks
J Yoon, J Jordon, M van der Schaar
arXiv preprint arXiv:1802.06403, 2018
492018
Measuring the quality of Synthetic data for use in competitions
J Jordon, J Yoon, M van der Schaar
arXiv preprint arXiv:1806.11345, 2018
422018
Hide-and-Seek Privacy Challenge: Synthetic Data Generation vs. Patient Re-identification
J Jordon, D Jarrett, E Saveliev, J Yoon, P Elbers, P Thoral, A Ercole, ...
NeurIPS 2020 Competition and Demonstration Track, 206-215, 2021
392021
OrganITE: Optimal transplant donor organ offering using an individual treatment effect
J Berrevoets, J Jordon, I Bica, M van der Schaar
Advances in Neural Information Processing Systems 33, 2020
372020
Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate
J Jordon, J Yoon, M van der Schaar
Advances in Neural Information Processing Systems, 4325-4334, 2019
232019
Synthetic Data: Opening the data floodgates to enable faster, more directed development of machine learning methods
J Jordon, A Wilson, M van der Schaar
arXiv preprint arXiv:2012.04580, 2020
202020
TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data
F Houssiau, J Jordon, SN Cohen, O Daniel, A Elliott, J Geddes, C Mole, ...
arXiv preprint arXiv:2211.06550, 2022
192022
Learning Queueing Policies for Organ Transplantation Allocation using Interpretable Counterfactual Survival Analysis
J Berrevoets, A Alaa, Z Qian, J Jordon, AES Gimson, M Van Der Schaar
International Conference on Machine Learning, 792-802, 2021
172021
Contextual Constrained Learning for Dose-Finding Clinical Trials
HS Lee, C Shen, J Jordon, M van der Schaar
arXiv preprint arXiv:2001.02463, 2020
172020
The system can't perform the operation now. Try again later.
Articles 1–20