Thomas Opitz
Thomas Opitz
Researcher, French National Institute of Agronomic Research
Geverifieerd e-mailadres voor - Homepage
Geciteerd door
Geciteerd door
Extremal t processes: Elliptical domain of attraction and a spectral representation
T Opitz
Journal of Multivariate Analysis 122, 409-413, 2013
Efficient inference and simulation for elliptical Pareto processes
E Thibaud, T Opitz
Biometrika 102 (4), 855-870, 2015
Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures
R Huser, T Opitz, E Thibaud
Spatial Statistics 21, 166-186, 2017
Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster
L Lombardo, T Opitz, R Huser
Stochastic environmental research and risk assessment 32 (7), 2179-2198, 2018
Modeling asymptotically independent spatial extremes based on Laplace random fields
T Opitz
Spatial Statistics 16, 1-18, 2016
INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
T Opitz, R Huser, H Bakka, H Rue
Extremes 21 (3), 441-462, 2018
What patients can tell us: topic analysis for social media on breast cancer
MDT Nzali, S Bringay, C Lavergne, C Mollevi, T Opitz
JMIR medical informatics 5 (3), e7779, 2017
Space-time landslide predictive modelling
L Lombardo, T Opitz, F Ardizzone, F Guzzetti, R Huser
Earth-Science Reviews, 103318, 2020
Latent Gaussian modeling and INLA: A review with focus on space-time applications
T Opitz
arXiv preprint arXiv:1708.02723, 2017
Breast cancer and quality of life: medical information extraction from health forums
T Opitz, J Azé, S Bringay, C Joutard, C Lavergne, C Mollevi
MIE: Medical Informatics Europe, 1070-1074, 2014
Extremal dependence of random scale constructions
S Engelke, T Opitz, J Wadsworth
Extremes 22 (4), 623-666, 2019
Numerical recipes for landslide spatial prediction using R-INLA: a step-by-step tutorial
L Lombardo, T Opitz, R Huser
Spatial modeling in GIS and R for earth and environmental sciences, 55-83, 2019
Hierarchical space-time modeling of asymptotically independent exceedances with an application to precipitation data
JN Bacro, C Gaetan, T Opitz, G Toulemonde
Journal of the American Statistical Association 115 (530), 555-569, 2020
Detecting and modeling multi-scale space-time structures: the case of wildfire occurrences
E Gabriel, T Opitz, F Bonneu
Journal de la Société Française de Statistique 158 (3), 86-105, 2017
Max‐infinitely divisible models and inference for spatial extremes
R Huser, T Opitz, E Thibaud
Scandinavian Journal of Statistics 48 (1), 321-348, 2021
Wind storm risk management: sensitivity of return period calculations and spread on the territory
A Mornet, T Opitz, M Luzi, S Loisel, B Bailleul
Stochastic Environmental Research and Risk Assessment 31 (8), 1977-1995, 2017
Index for predicting insurance claims from wind storms with an application in France
A Mornet, T Opitz, M Luzi, S Loisel
Risk Analysis 35 (11), 2029-2056, 2015
Point-process based Bayesian modeling of space–time structures of forest fire occurrences in Mediterranean France
T Opitz, F Bonneu, E Gabriel
Spatial Statistics 40, 100429, 2020
Penultimate modeling of spatial extremes: statistical inference for max-infinitely divisible processes
R Huser, T Opitz, E Thibaud
arXiv, 2018
The spectrogram: A threshold-based inferential tool for extremes of stochastic processes
T Opitz, JN Bacro, P Ribereau
Electronic journal of statistics 9 (1), 842-868, 2015
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20