On modified Runge–Kutta trees and methods C Tsitouras, IT Famelis, TE Simos Computers & Mathematics with Applications 62 (4), 2101-2111, 2011 | 158 | 2011 |

Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions TE Simos, IT Famelis, C Tsitouras Numerical Algorithms 34 (1), 27-40, 2003 | 132 | 2003 |

Runge–Kutta methods for fuzzy differential equations SC Palligkinis, G Papageorgiou, IT Famelis Applied mathematics and computation 209 (1), 97-105, 2009 | 98 | 2009 |

Phase-fitted Runge–Kutta pairs of orders 8 (7) C Tsitouras, IT Famelis, TE Simos Journal of Computational and Applied Mathematics 321, 226-231, 2017 | 87 | 2017 |

Explicit Numerov type methods with constant coefficients: a review TE Simos, C Tsitouras, IT Famelis Applied and computational mathematics 16 (2), 89-113, 2017 | 80 | 2017 |

A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations A Bratsos, M Ehrhardt, IT Famelis Applied mathematics and computation 197 (1), 190-205, 2008 | 57 | 2008 |

A P-stable singly diagonally implicit Runge–Kutta–Nyström method G Papageorgiou, IT Famelis, C Tsitouras Numerical Algorithms 17 (3), 345-353, 1998 | 37 | 1998 |

Symbolic derivation of Runge–Kutta order conditions IT Famelis, SN Papakostas, C Tsitouras Journal of Symbolic Computation 37 (3), 311-327, 2004 | 36 | 2004 |

Symbolic derivation of Runge–Kutta–Nyström order conditions C Tsitouras, IT Famelis Journal of mathematical chemistry 46 (3), 896-912, 2009 | 34 | 2009 |

Explicit Numerov type methods for second order IVPs with oscillating solutions G Papageorgiou, C Tsitouras, I TH. FAMELIS International Journal of Modern Physics C 12 (05), 657-666, 2001 | 32 | 2001 |

Symbolic derivation of order conditions for hybrid Numerov-type methods solving y ″= f (x, y) IT Famelis, C Tsitouras Journal of computational and applied mathematics 218 (2), 543-555, 2008 | 27 | 2008 |

Neural network solution of single-delay differential equations J Fang, C Liu, TE Simos, IT Famelis Mediterranean Journal of Mathematics 17 (1), 1-15, 2020 | 13 | 2020 |

Neural network solution of pantograph type differential equations CC Hou, TE Simos, IT Famelis Mathematical Methods in the Applied Sciences 43 (6), 3369-3374, 2020 | 12 | 2020 |

Equilibrium states of adaptive algorithms for delay differential equations DJ Higham, IT Famelis Journal of computational and applied mathematics 58 (2), 151-169, 1995 | 10 | 1995 |

A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers I Th. Famelis, A Alexandridis, C Tsitouras Engineering Optimization 50 (8), 1364-1379, 2018 | 9 | 2018 |

Using neural networks for the derivation of Runge–Kutta–Nyström pairs for integration of orbits C Tsitouras, IT Famelis New Astronomy 17 (4), 469-473, 2012 | 9 | 2012 |

Explicit eighth order Numerov-type methods with reduced number of stages for oscillatory IVPs I Th. FAMELIS International Journal of Modern Physics C 19 (06), 957-970, 2008 | 9 | 2008 |

On using explicit Runge–Kutta–Nyström methods for the treatment of retarded differential equations with periodic solutions G Papageorgiou, IT Famelis Applied mathematics and computation 102 (1), 63-76, 1999 | 9 | 1999 |

Particle swarm optimization for complex nonlinear optimization problems A Alexandridis, IT Famelis, C Tsitouras AIP conference proceedings 1738 (1), 480120, 2016 | 7 | 2016 |

Classical and quasi-Newton methods for a meteorological parameters prediction boundary value problem I Famelis, G Galanis, M Ehrhardt, D Triantafyllou Applied Mathematics & Information Sciences 8 (6), 2683, 2014 | 6 | 2014 |