Follow
Bram Steenwinckel
Title
Cited by
Cited by
Year
FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning
B Steenwinckel, D De Paepe, SV Hautte, P Heyvaert, M Bentefrit, ...
Future Generation Computer Systems 116, 30-48, 2021
992021
Facilitating the analysis of COVID-19 literature through a knowledge graph
B Steenwinckel, G Vandewiele, I Rausch, P Heyvaert, R Taelman, ...
International Semantic Web Conference, 344-357, 2020
44*2020
Deep learning models for predicting RNA degradation via dual crowdsourcing
HK Wayment-Steele, W Kladwang, AM Watkins, DS Kim, B Tunguz, ...
Nature Machine Intelligence 4 (12), 1174-1184, 2022
39*2022
Csv2kg: Transforming tabular data into semantic knowledge
B Steenwinckel, G Vandewiele, F De Turck, F Ongenae
SemTab, ISWC Challenge, 2019
382019
INK: knowledge graph embeddings for node classification
B Steenwinckel, G Vandewiele, M Weyns, T Agozzino, FD Turck, ...
Data Mining and Knowledge Discovery 36 (2), 620-667, 2022
322022
pyRDF2Vec: A Python Implementation and Extension of RDF2Vec
B Steenwinckel, G Vandewiele, T Agozzino, F Ongenae
European Semantic Web Conference, 471-483, 2023
30*2023
A generalized matrix profile framework with support for contextual series analysis
D De Paepe, SV Hautte, B Steenwinckel, F De Turck, F Ongenae, ...
Engineering Applications of Artificial Intelligence 90, 103487, 2020
242020
Towards adaptive anomaly detection and root cause analysis by automated extraction of knowledge from risk analyses
B Steenwinckel, P Heyvaert, D De Paepe, O Janssens, S Vanden Hautte, ...
9th International Semantic Sensor Networks Workshop, Co-Located with 17th …, 2018
242018
Walk extraction strategies for node embeddings with rdf2vec in knowledge graphs
B Steenwinckel, G Vandewiele, P Bonte, M Weyns, H Paulheim, ...
Database and Expert Systems Applications-DEXA 2021 Workshops: BIOKDD, IWCFS …, 2021
22*2021
Adaptive anomaly detection and root cause analysis by fusing semantics and machine learning
B Steenwinckel
The Semantic Web: ESWC 2018 Satellite Events: ESWC 2018 Satellite Events …, 2018
212018
A dynamic dashboarding application for fleet monitoring using semantic web of things technologies
S Vanden Hautte, P Moens, J Van Herwegen, D De Paepe, ...
Sensors 20 (4), 1152, 2020
182020
MAGIC: Mining an Augmented Graph using INK, starting from a CSV
B Steenwinckel, F De Turck, F Ongenae
Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph …, 2021
172021
Data analytics for health and connected care: Ontology, knowledge graph and applications
B Steenwinckel, M De Brouwer, M Stojchevska, J Van Der Donckt, J Nelis, ...
International Conference on Pervasive Computing Technologies for Healthcare …, 2022
162022
Assessing the added value of context during stress detection from wearable data
M Stojchevska, B Steenwinckel, J Van Der Donckt, M De Brouwer, A Goris, ...
BMC Medical Informatics and Decision Making 22 (1), 268, 2022
162022
Inducing a decision tree with discriminative paths to classify entities in a knowledge graph
G Vandewiele, B Steenwinckel, F Ongenae, F De Turck
SEPDA2019, the 4th International workshop on semantics-powered data mining …, 2019
142019
mBrain: towards the continuous follow-up and headache classification of primary headache disorder patients
M De Brouwer, N Vandenbussche, B Steenwinckel, M Stojchevska, ...
BMC Medical Informatics and Decision Making 22 (1), 87, 2022
92022
MINDWALC: mining interpretable, discriminative walks for classification of nodes in a knowledge graph
G Vandewiele, B Steenwinckel, FD Turck, F Ongenae
BMC Medical Informatics and Decision Making 20, 1-15, 2020
92020
Conditional constraints for knowledge graph embeddings
M Weyns, P Bonte, B Steenwinckel, F De Turck, F Ongenae
Workshop on Deep Learning for Knowledge Graphs (DL4KG2020), co-located with …, 2020
92020
Event-driven dashboarding and feedback for improved event detection in predictive maintenance applications
P Moens, S Vanden Hautte, D De Paepe, B Steenwinckel, S Verstichel, ...
Applied Sciences 11 (21), 10371, 2021
82021
A complete software stack for IoT time-series analysis that combines semantics and machine learning—lessons learned from the Dyversify project
D De Paepe, S Vanden Hautte, B Steenwinckel, P Moens, J Vaneessen, ...
Applied Sciences 11 (24), 11932, 2021
72021
The system can't perform the operation now. Try again later.
Articles 1–20