Gunnar von Heijne
Gunnar von Heijne
Professor Stockholm University, Sweden
Geverifieerd e-mailadres voor dbb.su.se
Titel
Geciteerd door
Geciteerd door
Jaar
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
A Krogh, B Larsson, G Von Heijne, ELL Sonnhammer
Journal of molecular biology 305 (3), 567-580, 2001
114432001
SignalP 4.0: discriminating signal peptides from transmembrane regions
TN Petersen, S Brunak, G Von Heijne, H Nielsen
Nature methods 8 (10), 785-786, 2011
88612011
Improved prediction of signal peptides: SignalP 3.0
JD Bendtsen, H Nielsen, G Von Heijne, S Brunak
Journal of molecular biology 340 (4), 783-795, 2004
76192004
Tissue-based map of the human proteome
M UhlÚn, L Fagerberg, BM Hallstr÷m, C Lindskog, P Oksvold, ...
Science 347 (6220), 2015
74012015
Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
H Nielsen, J Engelbrecht, S Brunak, G von Heijne
Protein engineering 10 (1), 1-6, 1997
65251997
A new method for predicting signal sequence cleavage sites
G Von Heijne
Nucleic acids research 14 (11), 4683-4690, 1986
52651986
Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
O Emanuelsson, H Nielsen, S Brunak, G Von Heijne
Journal of molecular biology 300 (4), 1005-1016, 2000
47982000
Locating proteins in the cell using TargetP, SignalP and related tools
O Emanuelsson, S Brunak, G Von Heijne, H Nielsen
Nature protocols 2 (4), 953-971, 2007
34842007
A hidden Markov model for predicting transmembrane helices in protein sequences.
ELL Sonnhammer, G Von Heijne, A Krogh
Ismb 6, 175-182, 1998
29231998
Signal sequences: the limits of variation
G Von Heijne
Journal of molecular biology 184 (1), 99-105, 1985
26261985
Patterns of amino acids near signal‐sequence cleavage sites
G Von Heijne
European journal of biochemistry 133 (1), 17-21, 1983
25941983
Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule
G Von Heijne
Journal of molecular biology 225 (2), 487-494, 1992
20671992
ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites
O Emanuelsson, H Nielsen, G Von Heijne
Protein Science 8 (5), 978-984, 1999
20001999
Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
E Wallin, GV Heijne
Protein Science 7 (4), 1029-1038, 1998
19251998
SignalP 5.0 improves signal peptide predictions using deep neural networks
JJA Armenteros, KD Tsirigos, CK S°nderby, TN Petersen, O Winther, ...
Nature biotechnology 37 (4), 420-423, 2019
14802019
Domain structure of mitochondrial and chloroplast targeting peptides
G von HEIJNE, J STEPPUHN, RG Herrmann
European Journal of Biochemistry 180 (3), 535-545, 1989
13491989
The signal peptide
G von Heijne
The Journal of membrane biology 115 (3), 195-201, 1990
13091990
TopPred II: an improved software for membrane protein structure predictions
MG Claros, G Heijne
Bioinformatics 10 (6), 685-686, 1994
12981994
Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method.
M Cserz÷, E Wallin, I Simon, G von Heijne, A Elofsson
Protein engineering 10 (6), 673-676, 1997
12971997
Machine learning approaches for the prediction of signal peptides and other protein sorting signals
H Nielsen, S Brunak, G von Heijne
Protein engineering 12 (1), 3-9, 1999
1201*1999
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20