Serial correlations in single-subject fMRI with sub-second TR S Bollmann, AM Puckett, R Cunnington, M Barth NeuroImage 166, 152-166, 2018 | 35 | 2018 |
The attentional field revealed by single-voxel modeling of fMRI time courses AM Puckett, EA DeYoe Journal of Neuroscience 35 (12), 5030-5042, 2015 | 33 | 2015 |
The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex AM Puckett, KM Aquino, PA Robinson, M Breakspear, MM Schira Neuroimage 139, 240-248, 2016 | 30 | 2016 |
Measuring the effects of attention to individual fingertips in somatosensory cortex using ultra-high field (7T) fMRI AM Puckett, S Bollmann, M Barth, R Cunnington Neuroimage 161, 179-187, 2017 | 26 | 2017 |
An investigation of positive and inverted hemodynamic response functions across multiple visual areas AM Puckett, JR Mathis, EA DeYoe Human brain mapping 35 (11), 5550-5564, 2014 | 19 | 2014 |
Using multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra-high field (7T) AM Puckett, S Bollmann, BA Poser, J Palmer, M Barth, R Cunnington Neuroimage 172, 886-895, 2018 | 14 | 2018 |
Bayesian population receptive field modeling in human somatosensory cortex AM Puckett, S Bollmann, K Junday, M Barth, R Cunnington Neuroimage 208, 116465, 2020 | 12 | 2020 |
Susceptibility artifact correction for sub-millimeter fMRI using inverse phase encoding registration and T1 weighted regularization STM Duong, SL Phung, A Bouzerdoum, HGB Taylor, AM Puckett, ... Journal of neuroscience methods 336, 108625, 2020 | 2 | 2020 |
Non-linear Realignment Using Minimum Deformation Averaging for Single-subject fMRI at Ultra-high Field S Bollmann, S Bollmann, A Puckett, AL Janke, M Barth Proc. Intl. Soc. Mag. Reson. Med 25, 2017 | 2 | 2017 |
Manipulating the structure of natural scenes using wavelets to study the functional architecture of perceptual hierarchies in the brain AM Puckett, MM Schira, ZJ Isherwood, JD Victor, JA Roberts, ... NeuroImage 221, 117173, 2020 | 1 | 2020 |
Predicting brain function from anatomy using geometric deep learning FL Ribeiro, S Bollmann, AM Puckett BioRXiv, 2020 | 1 | 2020 |
Population Attentional Field Modeling E DeYoe, A Puckett, Y Ma Journal of Vision 13 (9), 232-232, 2013 | 1 | 2013 |
Predicting the functional organization of human visual cortex from anatomy using geometric deep learning A Puckett, S Bollmann, F Ribeiro Journal of Vision 20 (11), 928-928, 2020 | | 2020 |
DeepRetinotopy: Predicting the Functional Organization of Human Visual Cortex from Structural MRI Data using Geometric Deep Learning FL Ribeiro, S Bollmann, AM Puckett arXiv preprint arXiv:2005.12513, 2020 | | 2020 |
Vascular effects on the BOLD response and the retinotopic mapping of hV4 HG Boyd Taylor, AM Puckett, ZJ Isherwood, MM Schira PloS one 14 (6), e0204388, 2019 | | 2019 |
Anatomy-guided Inverse-phase-encoding Registration Method for Correcting Susceptibility Artifacts in Sub-millimeter fMRI STM Duong, SL Phung, A Bouzerdoum, HGB Taylor, AM Puckett, ... bioRxiv, 779272, 2019 | | 2019 |
Why are hV4 maps incomplete in the left visual cortex but complete in the right hemisphere? HB Taylor, M Schira, Z Isherwood, A Puckett Journal of Vision 18 (10), 578-578, 2018 | | 2018 |
Mapping human V4: Correcting artefact reveals hemifield organisation H Taylor, AM Puckett, ZJ Isherwood, MM Schira | | 2015 |
Measuring the attentional field throughout human visual cortex AM Puckett, EA DeYoe Conference Abstract: ACNS-2013 Australasian Cognitive Neuroscience Society …, 2013 | | 2013 |
Towards concrete, in-depth and applicable predictions of BOLD responses; modelling the complete cascade from visual stimulus to neuronal response to vascular hemodynamics MM Schira, AM Puckett, M Breakspear, P Robinson, KM Aquino Conference Abstract: ACNS-2013 Australasian Cognitive Neuroscience Society …, 2013 | | 2013 |