A class of valid inequalities for multilinear 0–1 optimization problems Y Crama, E Rodríguez-Heck Discrete Optimization, 2017 | 37 | 2017 |
Compact quadratizations for pseudo-Boolean functions E Boros, Y Crama, E Rodríguez-Heck Journal of Combinatorial Optimization 39 (3), 687-707, 2020 | 12 | 2020 |
Linear and quadratic reformulations of nonlinear optimization problems in binary variables E Rodriguez Heck Université de Liège, Liège, Belgique, 2018 | 11 | 2018 |
Quadratizations of symmetric pseudo-Boolean functions: sub-linear bounds on the number of auxiliary variables E Boros, Y Crama, E Rodriguez Heck | 11 | 2018 |
Berge-acyclic multilinear 0–1 optimization problems C Buchheim, Y Crama, E Rodríguez-Heck European Journal of Operational Research 273 (1), 102-107, 2019 | 9 | 2019 |
Short prime quadratizations of cubic negative monomials Y Crama, E Rodriguez Heck HEC ULg, 2014 | 2 | 2014 |
Persistency of linear programming relaxations for the stable set problem E Rodríguez-Heck, K Stickler, M Walter, S Weltge Mathematical programming 192 (1), 387-407, 2022 | | 2022 |
Persistency of Linear Programming Formulations for the Stable Set Problem E Rodríguez-Heck, K Stickler, M Walter, S Weltge arXiv preprint arXiv:1911.01478, 2019 | | 2019 |