The (un) reliability of saliency methods PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ... Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 267-280, 2019 | 218 | 2019 |
Learning how to explain neural networks: Patternnet and patternattribution PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne arXiv preprint arXiv:1705.05598, 2017 | 189 | 2017 |
iNNvestigate neural networks! M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ... J. Mach. Learn. Res. 20 (93), 1-8, 2019 | 112 | 2019 |
Explanations can be manipulated and geometry is to blame AK Dombrowski, M Alber, CJ Anders, M Ackermann, KR Müller, P Kessel arXiv preprint arXiv:1906.07983, 2019 | 61 | 2019 |
Patternnet and patternlrp–improving the interpretability of neural networks PJ Kindermans, KT Schütt, M Alber, KR Müller, S Dähne arXiv preprint arXiv:1705.05598 3, 2017 | 38 | 2017 |
An empirical study on the properties of random bases for kernel methods M Alber, PJ Kindermans, KT Schütt, KR Müller, F Sha Proceedings of the 31st International Conference on Neural Information …, 2017 | 8 | 2017 |
Distributed optimization of multi-class SVMs M Alber, J Zimmert, U Dogan, M Kloft PloS one 12 (6), e0178161, 2017 | 8 | 2017 |
Software and application patterns for explanation methods M Alber Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 399-433, 2019 | 7 | 2019 |
Backprop evolution M Alber, I Bello, B Zoph, PJ Kindermans, P Ramachandran, Q Le arXiv preprint arXiv:1808.02822, 2018 | 7 | 2018 |
Learning how to explain neural networks: Patternnet and patternattribution (2017) PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne arXiv preprint arXiv:1705.05598, 2018 | 7 | 2018 |
Interpretable deep neural network to predict estrogen receptor status from haematoxylin-eosin images P Seegerer, A Binder, R Saitenmacher, M Bockmayr, M Alber, ... Artificial Intelligence and Machine Learning for Digital Pathology, 16-37, 2020 | 5 | 2020 |
How to iNNvestigate neural networks' predictions! M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ... | 1 | 2018 |
Artificial Intelligence and Pathology: from Principles to Practice and Future Applications in Histomorphology and Molecular Profiling A Stenzinger, M Alber, M Allgäuer, P Jurmeister, M Bockmayr, J Budczies, ... Seminars in cancer biology, 2021 | | 2021 |
Balancing the composition of word embeddings across heterogenous data sets S Brandl, D Lassner, M Alber arXiv preprint arXiv:2001.04693, 2020 | | 2020 |
Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images M Bockmayr, M Alber, P Jurmeister, F Klauschen, KR Müller Artificial Intelligence and Machine Learning for Digital Pathology: State-of …, 2020 | | 2020 |
Efficient learning machines: from kernel methods to deep learning M Alber | | 2019 |
Masterarbeit: Big Data and Machine Learning: A Case Study with Bump Boost M Alber | | 2015 |