Maximilian Alber
Maximilian Alber
Verified email at tu-berlin.de - Homepage
Title
Cited by
Cited by
Year
The (un) reliability of saliency methods
PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ...
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 267-280, 2019
1312019
Learning how to explain neural networks: Patternnet and patternattribution
PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne
arXiv preprint arXiv:1705.05598, 2017
1142017
iNNvestigate neural networks
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
Journal of Machine Learning Research 20 (93), 1-8, 2019
572019
Patternnet and patternlrp–improving the interpretability of neural networks
PJ Kindermans, KT Schütt, M Alber, KR Müller, S Dähne
arXiv preprint arXiv:1705.05598 3, 2017
312017
Explanations can be manipulated and geometry is to blame
AK Dombrowski, M Alber, C Anders, M Ackermann, KR Müller, P Kessel
Advances in Neural Information Processing Systems, 13567-13578, 2019
132019
Learning how to explain neural networks: PatternNet and PatternAttribution.(2018)
PJ Kindermans, KT Schutt, M Alber, KR Muller, D Erhan, B Kim, S Dahne
arXiv preprint arXiv:1705.05598, 2018
72018
Distributed optimization of multi-class SVMs
M Alber, J Zimmert, U Dogan, M Kloft
PloS one 12 (6), 2017
72017
Backprop evolution
M Alber, I Bello, B Zoph, PJ Kindermans, P Ramachandran, Q Le
arXiv preprint arXiv:1808.02822, 2018
62018
An empirical study on the properties of random bases for kernel methods
M Alber, PJ Kindermans, K Schütt, KR Müller, F Sha
Advances in Neural Information Processing Systems, 2763-2774, 2017
62017
Software and application patterns for explanation methods
M Alber
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 399-433, 2019
12019
How to iNNvestigate neural networks' predictions!
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
12018
Balancing the composition of word embeddings across heterogenous data sets
S Brandl, D Lassner, M Alber
arXiv preprint arXiv:2001.04693, 2020
2020
The (Un) reliability of Saliency Methods
M Alber, KT Schütt, S Dähne, D Erhan, B Kim
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 11700 …, 2019
2019
Masterarbeit: Big Data and Machine Learning: A Case Study with Bump Boost
M Alber
2015
The system can't perform the operation now. Try again later.
Articles 1–14