Ricardo Pio Monti
Ricardo Pio Monti
Gatsby Unit, UCL
Geverifieerd e-mailadres voor gatsby.ucl.ac.uk - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Estimating time-varying brain connectivity networks from functional MRI time series
RP Monti, P Hellyer, D Sharp, R Leech, C Anagnostopoulos, G Montana
NeuroImage 103, 427-443, 2014
1282014
The automatic neuroscientist: a framework for optimizing experimental design with closed-loop real-time fMRI
R Lorenz, RP Monti, IR Violante, C Anagnostopoulos, AA Faisal, ...
NeuroImage 129, 320-334, 2016
552016
Variational autoencoders and nonlinear ICA: A unifying framework
I Khemakhem, DP Kingma, RP Monti, A Hyvärinen
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
452019
Dissociating frontoparietal brain networks with neuroadaptive Bayesian optimization
R Lorenz, IR Violante, RP Monti, G Montana, A Hampshire, R Leech
Nature communications 9 (1), 1-14, 2018
232018
Real‐time estimation of dynamic functional connectivity networks
RP Monti, R Lorenz, RM Braga, C Anagnostopoulos, R Leech, G Montana
Human brain mapping 38 (1), 202-220, 2017
21*2017
Stopping criteria for boosting automatic experimental design using real-time fMRI with Bayesian optimization
R Lorenz, RP Monti, IR Violante, AA Faisal, C Anagnostopoulos, R Leech, ...
5th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging …, 2015
172015
Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA
RP Monti, K Zhang, A Hyvarinen
Uncertainty in Artificial Intelligence (UAI), 2019
152019
Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization
R Lorenz, LE Simmons, RP Monti, JL Arthur, S Limal, I Laakso, R Leech, ...
Brain stimulation 12 (6), 1484-1489, 2019
14*2019
Learning population and subject-specific brain connectivity networks via mixed neighborhood selection
RP Monti, C Anagnostopoulos, G Montana
The Annals of Applied Statistics 11 (4), 2142-2164, 2017
142017
Classifying HCP task-fMRI networks using heat kernels
AW Chung, E Pesce, RP Monti, G Montana
2016 International Workshop on Pattern Recognition in NeuroImaging (PRNI), 1-4, 2016
122016
Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization
R Lorenz, RP Monti, A Hampshire, Y Koush, C Anagnostopoulos, ...
2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 1-4, 2016
112016
Graph embeddings of dynamic functional connectivity reveal discriminative patterns of task engagement in HCP data
R Monti, R Lorenz, P Hellyer, R Leech, C Anagnostopoulos, G Montana
2015 International Workshop on Pattern Recognition in NeuroImaging, 1-4, 2015
112015
A Unified Probabilistic Model for Learning Latent Factors and Their Connectivities from High-Dimensional Data
RP Monti, A Hyvärinen
Uncertainty in Artificial Intelligence (UAI), 2018
102018
Adaptive regularization for Lasso models in the context of nonstationary data streams
RP Monti, C Anagnostopoulos, G Montana
Statistical Analysis and Data Mining: The ASA Data Science Journal 11 (5 …, 2018
7*2018
Avoiding degradation in deep feed-forward networks by phasing out skip-connections
RP Monti, S Tootoonian, R Cao
International Conference on Artificial Neural Networks (ICANN) 11141, 447-456, 2018
62018
Decoding time-varying functional connectivity networks via linear graph embedding methods
RP Monti, R Lorenz, P Hellyer, R Leech, C Anagnostopoulos, G Montana
Frontiers in computational neuroscience 11, 14, 2017
62017
ICE-BeeM: Identifiable conditional energy-based deep models
I Khemakhem, RP Monti, DP Kingma, A Hyvärinen
arXiv preprint arXiv:2002.11537, 2020
52020
Text-mining the NeuroSynth corpus using deep Boltzmann machines
R Monti, R Lorenz, R Leech, C Anagnostopoulos, G Montana
2016 International Workshop on Pattern Recognition in NeuroImaging (PRNI), 1-4, 2016
52016
Towards the interpretation of time-varying regularization parameters in streaming penalized regression models
L Zboňáková, RP Monti, WK Härdle
Pattern Recognition Letters 125, 542-548, 2019
32019
Robust contrastive learning and nonlinear ICA in the presence of outliers
H Sasaki, T Takenouchi, R Monti, A Hyvärinen
Uncertainty in Artificial Intelligence (UAI), 2020
12020
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20