Discontinuity of the phase transition for the planar random-cluster and Potts models with H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion arXiv preprint arXiv:1611.09877, 2016 | 49 | 2016 |

Inhomogeneous bond percolation on square, triangular and hexagonal lattices GR Grimmett, I Manolescu The Annals of Probability 41 (4), 2990-3025, 2013 | 34 | 2013 |

Bond percolation on isoradial graphs: criticality and universality GR Grimmett, I Manolescu Probability Theory and Related Fields 159 (1-2), 273-327, 2014 | 28 | 2014 |

Scaling limits and influence of the seed graph in preferential attachment trees N Curien, T Duquesne, I Kortchemski, I Manolescu Journal de l’École polytechnique-Mathématiques 2, 1-34, 2015 | 27 | 2015 |

Planar lattices do not recover from forest fires D Kiss, I Manolescu, V Sidoravicius The Annals of Probability 43 (6), 3216-3238, 2015 | 20 | 2015 |

The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp H Duminil-Copin, I Manolescu | 19 | 2014 |

Universality for the random-cluster model on isoradial graphs H Duminil-Copin, JH Li, I Manolescu Electronic Journal of Probability 23, 2018 | 15 | 2018 |

Universality for bond percolation in two dimensions GR Grimmett, I Manolescu The Annals of Probability 41 (5), 3261-3283, 2013 | 15 | 2013 |

Uniform Lipschitz functions on the triangular lattice have logarithmic variations A Glazman, I Manolescu arXiv preprint arXiv:1810.05592, 2018 | 12 | 2018 |

The Bethe ansatz for the six-vertex and XXZ models: An exposition H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion Probability Surveys 15, 102-130, 2018 | 12 | 2018 |

On the probability that self-avoiding walk ends at a given point H Duminil-Copin, A Glazman, A Hammond, I Manolescu The Annals of Probability 44 (2), 955-983, 2016 | 11 | 2016 |

Discontinuity of the phase transition for the planar random-cluster and potts models with q> 4 HD Copin, M Gagnebin, M Harel, I Manolescu, V Tassion Preprint, available at, 0 | 5 | |

Universality for planar percolation I Manolescu University of Cambridge, 2012 | 4 | 2012 |

Bounding the number of self-avoiding walks: Hammersley-Welsh with polygon insertion H Duminil-Copin, S Ganguly, A Hammond, I Manolescu arXiv preprint arXiv:1809.00760, 2018 | 2 | 2018 |

The phase transitions of the random-cluster and Potts models on slabs with are sharp I Manolescu, A Raoufiï Electronic Journal of Probability 23, 2018 | 2 | 2018 |

Self-avoiding walk on Z2 with Yang-Baxter weights: universality of critical fugacity and 2-point function A Glazman, I Manolescu arXiv preprint arXiv:1708.00395, 2017 | 1 | 2017 |

Planar random-cluster model: fractal properties of the critical phase H Duminil-Copin, I Manolescu, V Tassion arXiv preprint arXiv:2007.14707, 2020 | | 2020 |

Bounding the number of self-avoiding walks: Hammersley–Welsh with polygon insertion H Duminil-Copin, S Ganguly, A Hammond, I Manolescu Annals of Probability 48 (4), 1644-1692, 2020 | | 2020 |

Influence of the seed in affine preferential attachment trees DC Marchand, I Manolescu Bernoulli 26 (3), 1665-1705, 2020 | | 2020 |

Exponential decay in the loop model: , A Glazman, I Manolescu arXiv preprint arXiv:1810.11302, 2018 | | 2018 |