Ioan Manolescu
Ioan Manolescu
Verified email at unifr.ch - Homepage
Title
Cited by
Cited by
Year
Discontinuity of the phase transition for the planar random-cluster and Potts models with
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
arXiv preprint arXiv:1611.09877, 2016
492016
Inhomogeneous bond percolation on square, triangular and hexagonal lattices
GR Grimmett, I Manolescu
The Annals of Probability 41 (4), 2990-3025, 2013
342013
Bond percolation on isoradial graphs: criticality and universality
GR Grimmett, I Manolescu
Probability Theory and Related Fields 159 (1-2), 273-327, 2014
282014
Scaling limits and influence of the seed graph in preferential attachment trees
N Curien, T Duquesne, I Kortchemski, I Manolescu
Journal de l’École polytechnique-Mathématiques 2, 1-34, 2015
272015
Planar lattices do not recover from forest fires
D Kiss, I Manolescu, V Sidoravicius
The Annals of Probability 43 (6), 3216-3238, 2015
202015
The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp
H Duminil-Copin, I Manolescu
192014
Universality for the random-cluster model on isoradial graphs
H Duminil-Copin, JH Li, I Manolescu
Electronic Journal of Probability 23, 2018
152018
Universality for bond percolation in two dimensions
GR Grimmett, I Manolescu
The Annals of Probability 41 (5), 3261-3283, 2013
152013
Uniform Lipschitz functions on the triangular lattice have logarithmic variations
A Glazman, I Manolescu
arXiv preprint arXiv:1810.05592, 2018
122018
The Bethe ansatz for the six-vertex and XXZ models: An exposition
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
Probability Surveys 15, 102-130, 2018
122018
On the probability that self-avoiding walk ends at a given point
H Duminil-Copin, A Glazman, A Hammond, I Manolescu
The Annals of Probability 44 (2), 955-983, 2016
112016
Discontinuity of the phase transition for the planar random-cluster and potts models with q> 4
HD Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
Preprint, available at, 0
5
Universality for planar percolation
I Manolescu
University of Cambridge, 2012
42012
Bounding the number of self-avoiding walks: Hammersley-Welsh with polygon insertion
H Duminil-Copin, S Ganguly, A Hammond, I Manolescu
arXiv preprint arXiv:1809.00760, 2018
22018
The phase transitions of the random-cluster and Potts models on slabs with are sharp
I Manolescu, A Raoufiï
Electronic Journal of Probability 23, 2018
22018
Self-avoiding walk on Z2 with Yang-Baxter weights: universality of critical fugacity and 2-point function
A Glazman, I Manolescu
arXiv preprint arXiv:1708.00395, 2017
12017
Planar random-cluster model: fractal properties of the critical phase
H Duminil-Copin, I Manolescu, V Tassion
arXiv preprint arXiv:2007.14707, 2020
2020
Bounding the number of self-avoiding walks: Hammersley–Welsh with polygon insertion
H Duminil-Copin, S Ganguly, A Hammond, I Manolescu
Annals of Probability 48 (4), 1644-1692, 2020
2020
Influence of the seed in affine preferential attachment trees
DC Marchand, I Manolescu
Bernoulli 26 (3), 1665-1705, 2020
2020
Exponential decay in the loop model: ,
A Glazman, I Manolescu
arXiv preprint arXiv:1810.11302, 2018
2018
The system can't perform the operation now. Try again later.
Articles 1–20