Fabian Ojeda
Fabian Ojeda
KBC Bank Applied Data Analytical Modelling. PhD KU Leuven
Verified email at
Cited by
Cited by
A tutorial on support vector machine-based methods for classification problems in chemometrics
J Luts, F Ojeda, R Van de Plas, B De Moor, S Van Huffel, JAK Suykens
Analytica chimica acta 665 (2), 129-145, 2010
LS-SVMlab toolbox user's guide: version 1.7
K De Brabanter, P Karsmakers, F Ojeda, C Alzate, J De Brabanter, ...
Katholieke Universiteit Leuven, 2010
Candidate gene prioritization by network analysis of differential expression using machine learning approaches
D Nitsch, JP Gonçalves, F Ojeda, B De Moor, Y Moreau
BMC bioinformatics 11, 1-16, 2010
Combined mRNA microarray and proteomic analysis of eutopic endometrium of women with and without endometriosis
A Fassbender, N Verbeeck, D Börnigen, CM Kyama, A Bokor, ...
Human Reproduction 27 (7), 2020-2029, 2012
A kernel-based integration of genome-wide data for clinical decision support
A Daemen, O Gevaert, F Ojeda, A Debucquoy, JAK Suykens, C Sempoux, ...
Genome medicine 1, 1-17, 2009
Low rank updated LS-SVM classifiers for fast variable selection
F Ojeda, JAK Suykens, B De Moor
Neural Networks 21 (2-3), 437-449, 2008
Prospective exploration of biochemical tissue composition via imaging mass spectrometry guided by principal component analysis
R Van de Plas, F Ojeda, M Dewil, L Van Den Bosch, B De Moor, ...
Biocomputing 2007, 458-469, 2007
Proteomics analysis of plasma for early diagnosis of endometriosis
A Fassbender, E Waelkens, N Verbeeck, CM Kyama, A Bokor, ...
Obstetrics & Gynecology 119 (2 Part 1), 276-285, 2012
Extracción de características usando transformada wavelet en la identificación de voces patológicas
F Ojeda, G Castellanos
Universidad Nacional de Colombia. Sede Manizales, 2003
Polynomial componentwise LS-SVM: fast variable selection using low rank updates
F Ojeda, T Falck, B De Moor, JAK Suykens
The 2010 International Joint Conference on Neural Networks (IJCNN), 1-7, 2010
LS-SVMlab Toolbox User’s Guide
J Suykens, KD Brabanter, P Karsmakers, F Ojeda, C Alzate, JD Brabanter, ...
Technical report, Katholieke Universiteit Leuven, 2011
Predicting receptor-ligand pairs through kernel learning
E Iacucci, F Ojeda, B De Moor, Y Moreau
BMC bioinformatics 12, 1-8, 2011
Semi-supervised learning of sparse linear models in mass spectral imaging
F Ojeda, M Signoretto, R Van de Plas, E Waelkens, B De Moor, ...
Pattern Recognition in Bioinformatics: 5th IAPR International Conference …, 2010
Variable selection by rank-one updates for least squares support vector machines
F Ojeda, JAK Suykens, B De Moor
2007 International Joint Conference on Neural Networks, 2283-2288, 2007
Kernel based methods for microarray and mass spectrometry data analysis
F Ojeda
PhD thesis, Faculty of Engineering, KU Leuven, Leuven, Belgium, 2011
Kernel Based Methods for Microarray and Mass Spectrometry Data Analysis (Kernel gebaseerde methoden voor gegevensanalyse van microroosters en massaspectrometrie)
F Ojeda
Biomarkers in plasma or serum: Pitfalls in data processing
A Fassbender, E Waelkens, C Kyama, A Bokor, A Vodolazakaia, ...
Reproductive Sciences 18 (3), 191, 2011
Entropy based selection for spectral clustering
F Ojeda, C Alzate, B De Moor, JAK Suykens
KU Leuven Technical report, 2011
Learning gene networks with sparse inducing estimators
F Ojeda, M Signoretto, J Suykens
Machine Learning in Systems Biology, 167, 2009
Kernel clustering for knowledge discovery in clinical microarray data analysis
NLMM Pochet, F Ojeda, F De Smet, T De Bie, JAK Suykens
Kernel Methods in Bioengineering, Signal and Image Processing, 64-92, 2007
The system can't perform the operation now. Try again later.
Articles 1–20