Random walks in cones D Denisov, V Wachtel The Annals of Probability 43 (3), 992-1044, 2015 | 113 | 2015 |

Local probabilities for random walks conditioned to stay positive VA Vatutin, V Wachtel Probability Theory and Related Fields 143 (1-2), 177-217, 2009 | 79 | 2009 |

Hölder Index at a Given Point for Density States of Super-*α*-Stable Motion of Index 1+*β*K Fleischmann, L Mytnik, V Wachtel Journal of Theoretical Probability 24 (1), 66-92, 2011 | 53* | 2011 |

Lower deviation probabilities for supercritical Galton-Watson processes K Fleischmann, V Wachtel Annales de l'IHP Probabilités et statistiques 43 (2), 233-255, 2007 | 45 | 2007 |

Conditional limit theorems for ordered random walks D Denisov, V Wachtel Electronic Journal of Probability 15, 292-322, 2010 | 30 | 2010 |

On the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher case K Fleischmann, V Wachtel Annales de l'IHP Probabilités et statistiques 45 (1), 201-225, 2009 | 23 | 2009 |

Optimal local Hölder index for density states of superprocesses with (1+ β)-branching mechanism K Fleischmann, L Mytnik, V Wachtel The Annals of Probability 38 (3), 1180-1220, 2010 | 22 | 2010 |

Exit times for integrated random walks D Denisov, V Wachtel Annales de l'IHP Probabilités et statistiques 51 (1), 167-193, 2015 | 21 | 2015 |

Invariance principles for random walks in cones J Duraj, V Wachtel Stochastic Processes and their Applications, 2020 | 20 | 2020 |

A unified approach to the heavy-traffic analysis of the maximum of random walks S Shneer, V Wachtel Theory of Probability & Its Applications 55 (2), 332-341, 2011 | 19* | 2011 |

The variance of the discrepancy distribution of rounding procedures, and sums of uniform random variables L Heinrich, F Pukelsheim, V Wachtel Metrika 80 (3), 363-375, 2017 | 18 | 2017 |

Moderate deviations for a random walk in random scenery K Fleischmann, P Mörters, V Wachtel Stochastic processes and their applications 118 (10), 1768-1802, 2008 | 17 | 2008 |

Multifractal analysis of superprocesses with stable branching in dimension one L Mytnik, V Wachtel The Annals of Probability 43 (5), 2763-2809, 2015 | 14 | 2015 |

An exact asymptotics for the moment of crossing a curved boundary by an asymptotically stable random walk VI Wachtel, DE Denisov Theory of Probability & Its Applications 60 (3), 481-500, 2016 | 13* | 2016 |

Sudden extinction of a critical branching process in a random environment VA Vatutin, V Wachtel Theory of Probability & Its Applications 54 (3), 466-484, 2010 | 13 | 2010 |

Potential analysis for positive recurrent Markov chains with asymptotically zero drift: Power-type asymptotics D Denisov, D Korshunov, V Wachtel Stochastic Processes and their Applications 123 (8), 3027-3051, 2013 | 12 | 2013 |

Upper bounds for the maximum of a random walk with negative drift J Kugler, V Wachtel Journal of Applied Probability 50 (4), 1131-1146, 2013 | 11 | 2013 |

Probability Inequalities for a Critical Galton--Watson Process S Nagaev, V Vakhtel Theory of probability and its applications 50 (2), 225-247, 2006 | 11 | 2006 |

Large deviations for sums indexed by the generations of a Galton–Watson process K Fleischmann, V Wachtel Probability theory and related fields 141 (3-4), 445-470, 2008 | 10 | 2008 |

Large scale localization of a spatial version of Neveu’s branching process K Fleischmann, V Wachtel Stochastic processes and their applications 116 (7), 983-1011, 2006 | 10 | 2006 |